Study of the Influence of Polyamide Filler on the Physical and Mechanical Properties of High-Strength Concrete

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Orest Vakhula1, Volodymyr Moravskyi1, Oleksandr Grytsenko1, Diana Kindzera1
Affiliation: 
1 Lviv Polytechnic National University, 12 St. Bandera St., Lviv 79013, Ukraine orest.m.vakhula@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.04.735
AttachmentSize
PDF icon full_text.pdf2.46 MB
Abstract: 
The article investigates the influence of various polyamide fillers (granulated polyamide PA-6, polyamide fibers, and polyamide waste) on the physico-mechanical properties of high-strength concrete. It has been established that surface modification of the fillers using inorganic salt solutions (CaCl₂, Al₂(SO4)3, and Ca(NO3)2) can affect the hydration processes of the cement matrix and enhance interfacial interactions, which in turn improve the strength and durability of the concrete. The highest compressive strength (fcs₂ = 72.8 MPa; fcs₂₈ = 106.4 MPa) was achieved using 10 wt.% of PA-6 granules and 1.0 wt.% of fibers modified in a 30% CaCl₂ solution. This combination provides effective reinforcement of the concrete structure, reduces the likelihood of crack formation, and contributes to improved performance characteristics. Additionally, the use of polyamide waste as a filler represents a promising approach to polymer material recycling with a positive environmental impact.
References: 

[1] Bušić, R; Miličević, I; Rakocija, I; Mendeš, A. Experimental Investigation on Workability and Mechanical Properties of Carbon Fiber Reinforced High-Strength Concrete (HSC) Containing Waste Bakelite Aggregate (WBA). Mater Today: Proc. 2023, 6, 131. https://doi.org/10.1016/j.matpr.2023.06.151
https://doi.org/10.1016/j.matpr.2023.06.151

[2] Hashim, Y.; Yang, Q.; Li, P. Load Path Dependence for Passively and Actively Confined High-Strength Concrete.Constr Build Mater. 2024, 440, 137353. https://doi.org/10.1016/j.conbuildmat.2024.137353
https://doi.org/10.1016/j.conbuildmat.2024.137353

[3] Sidhu, A.; Siddique, R. Review on Effect of Curing Methods on High Strength Concrete. Constr Build Mater. 2024, 438, 136858. https://doi.org/10.1016/j.conbuildmat.2024.136858
https://doi.org/10.1016/j.conbuildmat.2024.136858

[4] Guan, Z.; Lai, Z.; Qin, J.; Chen, Y.; Wen, Y.; Huang, R. Mechanical Properties of High-Strength Concrete (HSC) under Projectile Penetration. Constr Build Mater. 2024, 442, 137579. https://doi.org/10.1016/j.conbuildmat.2024.137579
https://doi.org/10.1016/j.conbuildmat.2024.137579

[5] Ahmad, M.; Rizwan, M.; Javed, M.; Alkhattabi, L.; Aslam, F.; Qamar, M.; Ullah, F. Optimizing Hybrid Fiber Content for Enhanced Thermo-Mechanical Performance of High-Strength Concrete. Mater Today Commun. 2024, 39, 109293. https://doi.org/10.1016/j.mtcomm.2024.109293
https://doi.org/10.1016/j.mtcomm.2024.109293

[6] Du, T.; Liu, F.; Wei, H.; Li, Y.; Yang, H.; Peng, K. Behaviours of Circular High-Strength Concrete-Filled High-Strength Steel Tubular Columns after Constant Heating. J Constr Steel Res. 2024, 221, 108933. https://doi.org/10.1016/j.jcsr.2024.108933
https://doi.org/10.1016/j.jcsr.2024.108933

[7] Shevchenko, V.; Kotsay, G. Influence of Fine-Grinded Glass Additives on the Induction and Post-induction Periods of Portland Cement Hardening. Chem. Chem. Technol. 2014, 8, 189-192. https://doi.org/10.23939/chcht08.02.189
https://doi.org/10.23939/chcht08.02.189

[8] Pakravan, H.R; Ozbakkaloglu, T. Synthetic Fibers for Cementitious Composites: A Critical and in-Depth Review of Recent Advances. Constr Build Mater. 2019, 207, 491-518. https://doi.org/10.1016/j.conbuildmat.2019.02.078
https://doi.org/10.1016/j.conbuildmat.2019.02.078

[9] Kabat, O.; Boiko, Yu. Polymer Composites Based on Aromatic Polyamide and Aramid Fiber for Heavy-Duty Friction and Sealing Units. Chem. Chem. Technol. 2025, 19, 335-341. https://doi.org/10.23939/chcht19.02.335
https://doi.org/10.23939/chcht19.02.335

[10] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312-317. https://doi.org/10.23939/chcht14.03.312
https://doi.org/10.23939/chcht14.03.312

[11] Suberlyak, O. V.; Baran, N. M.; Melnyk, Y. Y.; Grytsenko, O. M.; Yatsulchak, H. V. Influence of the Molecular Weight of Polyvinylpyrrolidone on the Physicomechanical Properties of Composite Polyamide Hydrogel Membranes. Mater Sci. 2020, 55, 758-764. https://link.springer.com/article/10.1007/s11003-020-00368-3
https://doi.org/10.1007/s11003-020-00368-3

[12] Baran, N.; Grytsenko, O.; Dulebova, L.; Spiśak, E. Features of the Formation of a Reinforcing Coating on Hydrogel Membranes Based on Polyvinylpyrrolidone Copolymers. Appl Sci. 2024, 14, 3234. https://doi.org/10.3390/app14083234
https://doi.org/10.3390/app14083234

[13] Kabat, O.; Sytar, V.; Sukhyy, K. Antifrictional Polymer Composites Based on Aromatic Polyamide and Carbon Black. Chem. Chem. Technol. 2018, 12, 326-330. https://doi.org/10.23939/chcht12.03.326
https://doi.org/10.23939/chcht12.03.326

[14] Caballero, B.M.; Lopez-Urionabarrenechea, A.; Gonzalez-Arcos, J.P.; Perez-Martinez, B.B.; Acha, E.; Iturrondobeitia, M.; Ibarretxe, J.; Esnaola, A.; Baskaran, M. Recycling Fiber-Reinforced Polyamide Waste from the Automotive Industry: Life Cycle Assessment (LCA) of an Advanced Pyrolysis Process to Reclaim Glass Fibers and Valuable Chemicals. Materials 2025, 18, 1594. https://doi.org/10.3390/ma18071594
https://doi.org/10.3390/ma18071594

[15] Kim, K.; Kim, M.; Kim, Y.; Kim, J.; Lim, J.; Lee, W.; Kim, H.S.; Cho, D.-H.; Lee, J.; Choi, S. Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers 2024, 16, 3152. https://doi.org/10.3390/polym16223152
https://doi.org/10.3390/polym16223152

[16] Gama, N.; Araújo, J.; Godinho, B.; Ferreira, A.; Barros-Timmons, A. Solvolysis of Nylon: A Pathway to Sustainable Recycling and Circular Economy. Sustainability 2024, 16, 9725. https://doi.org/10.3390/su16229725
https://doi.org/10.3390/su16229725

[17] Kazemi, M.; Kabir, Sk. F.; Fini, E. Review State of the Art in Recycling Waste Thermoplastics and Thermosets and their Applications in Construction. Resour Conserv Recycl. 2021, 174, 105776. https://doi.org/10.1016/j.resconrec.2021.105776
https://doi.org/10.1016/j.resconrec.2021.105776

[18] Colangelo, F.; Cioffi, R.; Liguori, B.; Iucolano, F. Recycled Polyolefins Waste as Aggregates for Lightweight Concrete. Composites, Part B 2016, 106, 234-241. https://doi.org/10.1016/j.compositesb.2016.09.041
https://doi.org/10.1016/j.compositesb.2016.09.041

[19] Lee, J.; Kim, J.; Ahn, J.; Ahn, Y.; Lee, S. Current Advancements in the Bio-Based Production of Polyamides. Trends Chem. 2023, 12, 873-891. https://doi.org/10.1016/j.trechm.2023.10.001
https://doi.org/10.1016/j.trechm.2023.10.001

[20] Kabat, O.; Sytar, V.; Derkach, O.; Sukhyy, K. Polymeric Composite Materials of Tribotechnical Purpose with a High Level of Physical, Mechanical and Thermal Properties. Chem. Chem. Technol. 2021, 15, 543-550. https://doi.org/10.23939/chcht15.04.543
https://doi.org/10.23939/chcht15.04.543

[21] Zhang, Q.; Zhu, G.-R.; Xiao, X.-X.; Jiang, M.; He, F.-M.; Li, X.; Guo, D.; Zhao, H.B.; Zhao, Z.-Y.; Chen, L.; et al. Room-Temperature Hydrogen Bonding and High-Temperature Rearrangement towards High-Performance Flame-Retardant Aliphatic Polyamide. Polymer 2024, 295, 126780. https://doi.org/10.1016/j.polymer.2024.126780
https://doi.org/10.1016/j.polymer.2024.126780

[22] Kijo-Kleczkowska, A.; Szumera, M.; Gnatowski, A.; Sadkowski, D. Comparative Thermal Analysis of Coal Fuels, Biomass, Fly Ash and Polyamide. Energy 2022, 258, 124840. https://doi.org/10.1016/j.energy.2022.124840
https://doi.org/10.1016/j.energy.2022.124840

[23] Dencheva, N.; Nunes, T.; Oliveira, M.; Denchev, Z. Microfibrillar Composites Based on Polyamide/Polyethylene Blends. 1. Structure Investigations in Oriented and Isotropic Polyamide 6. Polymer 2005, 46, 887-901. https://doi.org/10.1016/j.polymer.2004.11.105
https://doi.org/10.1016/j.polymer.2004.11.105

[24] Abdel-Maksoud, G.; Mohamed, O.; Mohamed, W.; Elnagar, K.; Abdallah, A.; Youssef, R.; Elsayed, D.; Labib, N.; Bayoumy, A.; Elhaes, H.; et al. Physical Prospective of Polyamide 6 for the Consolidation of Fragile Vegetable Tanned Leather Artifacts. J Cult Heritage. 2024, 67, 32-41. https://doi.org/10.1016/j.culher.2024.02.002
https://doi.org/10.1016/j.culher.2024.02.002

[25] Krylova, V.; Dukštienė, N. The Structure of PA-Se-S-Cd Composite Materials Probed with FTIR Spectroscopy. Appl Surf Sci. 2019, 470, 462-471. https://doi.org/10.1016/j.apsusc.2018.11.121
https://doi.org/10.1016/j.apsusc.2018.11.121

[26] Dasgupta, S.; Hammond, W.B.; Goddard III, W.A. Crystal Structures and Properties of Nylon Polymers. J Am Chem Soc. 1996, 118, 12291-12301.
https://doi.org/10.1021/ja944125d

[27] Zope, I. S.; Dasari, A.; Guan, F.; Yu, Z-Z. Influence of Metal Ions on Thermo-Oxidative Stability and Combustion Response of Polyamide 6/Clay Nanocomposites. Polymer 2016, 92, 102-113. https://doi.org/10.1016/j.polymer.2016.03.087
https://doi.org/10.1016/j.polymer.2016.03.087

[28] Al-Mansour, A.; Zhu, Y.; Lan, Y.; Dang, N.; Alwathaf, A.; Zeng, Q. Improving the Adhesion between Recycled Plastic Aggregates and the Cement Matrix. In Reuse of Plastic Waste in Eco-Efficient Concrete; Edited by: Pacheco-Torgal, F.; Khatib, J., Eds.; Elsevier, 2024; pp 113-138. https://doi.org/10.1016/B978-0-443-13798-3.00008-5
https://doi.org/10.1016/B978-0-443-13798-3.00008-5

[29] Ksouri, I.; de Almeida, O.; Haddar, N. Long Term Ageing of Polyamide 6 and Polyamide 6 Reinforced with 30% of Glass Fibers: Physicochemical, Mechanical and Morphological Characterization. J Polym Res. 2017, 24, 133. https://doi.org/10.1007/s10965-017-1292-6.
https://doi.org/10.1007/s10965-017-1292-6

[30] Hou, Y. The Moisture Absorption of 3D Printed Short Carbon Fibre Reinforced Polyamide. Composites, Part A. 2024, 184, 108266. https://doi.org/10.1016/j.compositesa.2024.108266
https://doi.org/10.1016/j.compositesa.2024.108266

[31] Venoor, V.; Park, J. H.; Kazmer, D. O.; Sobkowicz, M. J. Understanding the Effect of Water in Polyamides: A Review. Polym Rev. 2020, 61, 598-645. https://doi.org/10.1080/15583724.2020.1855196
https://doi.org/10.1080/15583724.2020.1855196

[32] Thirumalai, R.; Løgstrup, D. P.; Andersen, T., & Lystrup, A. Influence of Moisture Absorption on Properties of Fiber Reinforced Polyamide 6 Composites. In Proceedings of the 26th Annual Technical Conference of the American Society for Composites 2011 and the 2nd Joint US-Canada Conference on Composites; 2011, 1; pp 500-510.

[33] Meng, Li-Yi; Wang, Y.-S.; Lin, R.; Wang, X.-Y. The Influence and Mechanism Analysis of Aluminum Sulfate as an Environmentally Friendly Early Strength Agent on the Properties of Cement-Based Materials. Case Stud Constr Mater. 2024, 20, e03278. https://doi.org/10.1016/j.cscm.2024.e03278
https://doi.org/10.1016/j.cscm.2024.e03278

[34] Briendl, L.G.; Mittermayr, F.; Baldermann, Andre; Steindl, F.R.; Sakoparnig, M.; Letofsky-Papst, I.; Galan, I. Early Hydration of Cementitious Systems Accelerated by Aluminium Sulphate: Effect of Fine Limestone. Cem Concr Res. 2020, 134, 106069. https://doi.org/10.1016/j.cemconres.2020.106069
https://doi.org/10.1016/j.cemconres.2020.106069

[35] Liu, X; Ma, B; Tan, H.; Gu, B.; Zhang, T.; Chen, P.; Li, H.; Mei, J. Effect of Aluminum Sulfate on the Hydration of Portland Cement, Tricalcium Silicate and Tricalcium Aluminate. Constr Build Mater. 2020, 232, 117179. https://doi.org/10.1016/j.conbuildmat.2019.117179
https://doi.org/10.1016/j.conbuildmat.2019.117179

[36] Kishar, E.A; Ahmed, D.A; Mohammed, M.R; Noury, R. Effect of Calcium Chloride on the Hydration Characteristics of Ground Clay Bricks Cement Pastes. Beni-Suef Univ. J. Basic Appl. Sci 2013, 2, 20-30. https://doi.org/10.1016/j.bjbas.2013.09.003
https://doi.org/10.1016/j.bjbas.2013.09.003

[37] Zhao, B.; Wen, J.; Zhai, D.; Tang, R; Chen, S.; Xin, J. Effect of Calcium Chloride on the Properties of Gangue Cemented Paste Backfill: Experimental Results of Setting Time, Rheological Properties, Mechanical Strength and Microscopic Properties. Case Stud Constr Mater. 2025, 22, e04331. https://doi.org/10.1016/j.cscm.2025.e04331
https://doi.org/10.1016/j.cscm.2025.e04331

[38] Juenger, M.C.G.; Monteiro, P.J.M.; Gartner, E.M.; Denbeaux, G.P. A Soft X-ray Microscope Investigation into the Effects of Calcium Chloride on Tricalcium Silicate Hydration. Cem Concr Res. 2005, 35, 19-25.
https://doi.org/10.1016/j.cemconres.2004.05.016

[39] Balonis, M. Solid Solutions Among Cement AFm Phases Containing Nitrate and Nitrite Ions. Adv Cem Res. 2023, 36, 337-358. https://doi.org/10.1680/jadcr.23.00010
https://doi.org/10.1680/jadcr.23.00010

[40] Zhuo, C.; Yishun, L; Fang, D.; Kejin, W.; Tianxiao, Z.; Haibao, W. Effect of Calcium Nitrate on Hydration Properties and Strength Development of Calcium Sulfoaluminate Cement. Constr Build Mater. 2024, 421, 135770. https://doi.org/10.1016/j.conbuildmat.2024.135770
https://doi.org/10.1016/j.conbuildmat.2024.135770

[41] Balonis, M.; Mędala, M.; Glasser, F.P. Influence of Calcium Nitrate and Nitrite on the Constitution of AFm and AFt Cement Hydrates. Adv Cem Res. 2011, 23, 129-143. https://doi.org/10.1680/adcr.10.00002
https://doi.org/10.1680/adcr.10.00002

[42] Saatci, S.; Sirin Cetin, F.; Sarra Aloui, S.; Naseri, J. Effects of Steel Fiber Type and Ratio on the One-Way Bending Behavior of Hybrid Fiber Reinforced Concrete Thin Panels. Constr Build Mater. 2024, 411, 134190. https://doi.org/10.1016/j.conbuildmat.2023.134190
https://doi.org/10.1016/j.conbuildmat.2023.134190

[43] Wang, S.; Wang, B.; Zhu, H.; Chen, G.; Li, Z.; Yang, L.; Zhang, Y.; Zhou, X. Ultra-High Performance Concrete: Mix Design, Raw Materials and Curing Regimes-A Review. Mater Today Commun. 2023, 35, 105468. https://doi.org/10.1016/j.mtcomm.2023.105468
https://doi.org/10.1016/j.mtcomm.2023.105468

[44] Fu, B.; Xu, G.-T.; Peng, W.-S.; Huang, J.-Z.; Zou, Q.-Q.; Kuang, Y.-D. Performance Enhancement of Recycled Coarse Aggregate Concrete by Incorporating with Macro Fibers Processed from Waste GFRP. Constr Build Mater. 2024, 411, 134166. https://doi.org/10.1016/j.conbuildmat.2023.134166
https://doi.org/10.1016/j.conbuildmat.2023.134166

[45] Liang, N.; Geng, S.; Mao, J.; Liu, X.; Zhou, X. Investigation on Cracking Resistance Mechanism of Basalt-Polypropylene Fiber Reinforced Concrete Based on SEM Test. Constr Build Mater. 2024, 411, 134102. https://doi.org/10.1016/j.conbuildmat.2023.134102
https://doi.org/10.1016/j.conbuildmat.2023.134102

[46] Du, J.; Meng, W.; Khayat, K. H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-obeidah, A.; Nassif, H.; Wang, H. New Development of Ultra-High-Performance Concrete (UHPC). Composites, Part B 2021, 224, 109220, https://doi.org/10.1016/j.compositesb.2021.109220
https://doi.org/10.1016/j.compositesb.2021.109220

[47] Cavusoglu, I.; Yilmaz, E.; Yilmaz, A. Additivity Effect on Properties of Cemented Coal Fly Ash Backfill Containing Water-Reducing Admixtures. Constr Build Mater. 2021, 267, 121021, https://doi.org/10.1016/j.conbuildmat.2020.121021
https://doi.org/10.1016/j.conbuildmat.2020.121021

[48] Wang, S.; Zhu, H.; Liu, F.; Cheng, S.; Wang, B.; Yang, L. Effects of Steel Fibers and Concrete Strength on Flexural Toughness of Ultra-High Performance Concrete with Coarse Aggregate. Case Stud Constr Mater. 2022, 17, e1170, https://doi.org/10.1016/j.cscm.2022.e01170
https://doi.org/10.1016/j.cscm.2022.e01170

[49] Jang, E.; Kim, J.J. ; Yoo, D. Dynamic Pullout Behavior of Multiple Steel Fibers in UHPC: Effects of Fiber Geometry, Inclination Angle, and Loading Rate. Materials 2019, 12, 3365. https://doi.org/10.3390/ma12203365
https://doi.org/10.3390/ma12203365

[50] Ren, L.; Fang, Z.; Wang, K. Design and Behavior of Super-Long Span Cable-Stayed Bridge with CFRP Cables and UHPC Members. Composites, Part B 2019, 164, 72-81. https://doi.org/10.1016/j.compositesb.2018.11.060
https://doi.org/10.1016/j.compositesb.2018.11.060

[51] Marushchak, U.; Sydor, N.; Margal, I. Impact of Polypropylene Fibers on the Properties of Engineered Cementitious Composites. Lecture Notes in Civ Eng. 2023, 290, 262-269. https://doi.org/10.1007/978-3-031-14141-6_26
https://doi.org/10.1007/978-3-031-14141-6_26

[52] Marushchak, U.; Sydor, N.; Braichenko, S.; Margal, I.; Soltysik, R. Modified Fiber Re-Inforced Concrete for Industrial Floors. IOP Conference Series: Mater Sci Eng. 2019, 708, 012094. https://doi.org/10.1088/1757-899X/708/1/012094
https://doi.org/10.1088/1757-899X/708/1/012094

[53] Hassan, A.; ElNemr, A.; Goebel, L.; Koenke, C. Effect of Hybrid Polypropylene Fibers on Mechanical and Shrinkage Behavior of Alkali-Activated Slag Concrete. Constr Build Mater. 2024, 411, 134485. https://doi.org/10.1016/j.conbuildmat.2023.134485
https://doi.org/10.1016/j.conbuildmat.2023.134485

[54] Richardson, A. Compressive Strength of Concrete with Polypropylene Fibre Additions. Struct Surv. 2006, 24, 138-153. https://doi.org/10.1108/02630800610666673
https://doi.org/10.1108/02630800610666673

[55] Tran, T.; Pham, T.; Huang, Z.; Chen, W.; Hao, H.; Elchalakani, M. Impact Response of Fibre Reinforced Geopolymer Concrete Beams with BFRP Bars and Stirrups. Eng Struct. 2021, 231, 111785. https://doi.org/10.1016/j.engstruct.2020.111785
https://doi.org/10.1016/j.engstruct.2020.111785

[56] Hao, Y.; Cheng, L.; Hao, H.; Shahin, M. Enhancing Fiber/Matrix Bonding in Polypropylene Fiber Reinforced Cementitious Composites by Microbially Induced Calcite Precipitation pre-Treatment. Cem Concr Compos. 2018, 88, 1-7. https://doi.org/10.1016/j.cemconcomp.2018.01.001
https://doi.org/10.1016/j.cemconcomp.2018.01.001

[57] Stiegelmaier, E.; Costa, T.C.; Pakuszewski, G.; Guelli Ulson de Souza, S.M.; Ulson de Souza, A.A.; Serafini Immich, A.P. Enhancing Polyamide 6: Acid Hydrolysis for Functionalization and Amino Group Quantification. Polymer. 2024, 298, 126905. https://doi.org/10.1016/j.polymer.2024.126905
https://doi.org/10.1016/j.polymer.2024.126905

[58] Novytskyi, Y.; Topylko, N.; Marushchak, U.; Turba, Y. Composite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement. Chem. Chem. Technol. 2024, 18, 7-15. https://doi.org/10.23939/chcht18.01.007
https://doi.org/10.23939/chcht18.01.007

[59] Kropyvnytska, T.; Sanytsky, М.; Kaminskyi, A.; Vakhula, O. Effect of Layered Double Hydroxides Ca-Al LDHs and Polycarboxylate Ethers on the Hardening of Portland Limestone Cement. Eastern-European J Enterp Technol. 2022, 5(6(119), 30-40. https://doi.org/10.15587/1729-4061.2022.266269
https://doi.org/10.15587/1729-4061.2022.266269

[60] Sanytsky, М.; Kropyvnytska, T.; Vakhula, O.; Bobetskyi, Y. Nanomodified Ultra High-Performance Fiber Reinforced Cementitious Composites with Enhanced Operational Characteristics. In Proceedings of CEE 2023. CEE 2023. Lecture Notes in Civil Engineering, vol 438; Blikharskyy, Z.; Koszelnik, P.; Lichołai, L.; Nazarko, P.; Katunský, D., Eds.; Springer, Cham., 2023. https://doi.org/10.1007/978-3-031-44955-0_36
https://doi.org/10.1007/978-3-031-44955-0_36

[61] Vakhula, O.; Kindzera, D.; Novytskyi, Y. Study of the Influence of Polycarboxylate Type Superplasticizers MasterGlenium ACE 430 and MasterGlenium ACE 560 on the Physical and Technical Properties of Fine-Grained Concrete. Chem. Chem. Technol. 2025, 19, 286-296. https://doi.org/10.23939/chcht19.02.286
https://doi.org/10.23939/chcht19.02.286