Взаємодія нуклеотидів з поверхнею нанокристалічного діоксиду церію

Nataliia Vlasova1, Olga Markitan1
1 Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine 17, Generala Naumova St., Kyiv 03164, Ukraine natalie.vlasova@gmail.com
PDF icon full_text.pdf380.88 KB
Було досліджено адсорбцію нуклеотидів на поверхні нанокристалічного діоксиду церію (рНТНЗ = 6,3) з водних розчинів NaCl у широкому діапазоні рН. Одержані результати було інтерпретовано як утворення зовнішньо- та внутрішньосферних комплексів за участі фосфатних залишків. Для кількісного визначення констант рівноваги реакцій було застосовано базову модель комплексоутворення на поверхні Штерна.

[1] Nel, A.E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Vince Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano–Bio Interface. Nat. Mater. 2009, 8, 543-557. https://doi.org/10.1038/nmat2442
[2] Vallee, A.; Humblot, V.; Pradier, C.-M. Peptide Interactions with Metal and Oxide Surfaces. Acc. Chem. Res. 2010, 43 (10), 1297-1306. https://doi.org/10.1021/ar100017n
[3] Stark, W.J. Nanoparticles in Biological Systems. Angew. Chem. Int. Ed. 2011, 50 (6), 1242-1258. https://doi.org/10.1002/anie.200906684
[4] Shemetov, A.; Nabiev, I.; Sukhanova, A. Molecular Interaction of Proteins and Peptides with Nanoparticles. ACS Nano 2012, 6 (6), 4585-4602. https://doi.org/10.1021/nn300415x
[5] Huang, R.; Lau, B.L.T. Biomolecule–Nanoparticle Interactions: Elucidation of the Thermodynamics by Isothermal Titration Calorimetry. Biochim. Biophys. Acta Gen. Subj. 2016, 1860 (5), 945-956. https://doi.org/10.1016/j.bbagen.2016.01.027
[6] Gunnarsson, S.B.; Bernfur, K.; Mikkelsen, A.; Cedervall, T. Analysis of Nanoparticle Biomolecule Complexes. Nanoscale 2018, 10, 4246-4257. https://doi.org/10.1039/c7nr08696b
[7] Xu, C.; Qu, X. Cerium Oxide Nanoparticle: A Remarkably Versatile Rare Earth Nanomaterial for Biological Applications. NPG Asia Mater. 2014, 6, e90. https://doi.org/10.1038/am.2013.88
[8] Shcherbakov, A.B.; Zholobak, N.M.; Ivanov, V.K. Biological, Biomedical and Pharmaceutical Applications of Cerium Oxide. In Cerium Oxide (CeO2): Synthesis, Properties and Applications; Scire, S.; Palmisano L., Eds.; Elsevier, 2019; pp 279-358.
[9] Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J.M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew. Chem Int. Ed. 2009, 121, 2344-2348. https://doi.org/10.1002/ange.200805279
[10] Li, X.; Sun, L.; Ge, A.; Guo, Y. Enhanced Chemiluminescence Detection of Thrombin Based on Cerium Oxide Nanoparticles. Chem. Comm. 2011, 47, 947-949. https://doi.org/10.1039/C0CC03750H
[11] Kaittanis, C.; Santra, S.; Asati, A.; Perez, J.M. A Cerium Oxide Nanoparticle-Based Device for the Detection of Chronic Inflammation via Optical and Magnetic Resonance Imaging. Nanoscale 2012, 4, 2117-2123. https://doi.org/10.1039/C2NR11956K
[12] Ornatska, M.; Sharpe, E.; Andreescu, D.; Andreescu, S. Paper Bioassay Based on Ceria Nanoparticles as Colorimetric Probes. Anal. Chem. 2011, 83 (11), 4273-4280. https://doi.org/10.1021/ac200697y
[13] Xu, C.; Lin, Y.; Wang, J.; Wu, L.; Wei, W.; Ren, J.; Qu, X. Nanoceria-Triggered Synergetic Drug Release Based on CeO2-Capped Mesoporous Silica Host–Guest Interactions and Switchable Enzymatic Activity and Cellular Effects of CeO2. Adv. Healthc. Mater. 2013, 2 (12), 1591-1599. https://doi.org/10.1002/adhm.201200464
[14] Li, M.; Shi, P.; Xu, C.; Ren, J.; Qu, X. Cerium Oxide Caged Metal Chelator: Anti-Aggregation and Anti-Oxidation Integrated H2O2-Responsive Controlled Drug Release for Potential Alzheimer’s Disease Treatment. Chem. Sci. 2013, 4, 2536-2542. https://doi.org/10.1039/C3SC50697E
[15] Karakoti, A. S.; Tsigkou, O.; Yue, S.; Lee, P.D.; Stevens, M.M.; Jones, J.R.; Seal, S. Rare Earth Oxides as Nanoadditives in 3-D Nanocomposite Scaffolds for Bone Regeneration. J. Mater. Chem. 2010, 20, 8912-8919. https://doi.org/10.1039/C0JM01072C
[16] Mandoli, C.; Pagliari, F.; Pagliari, S.; Forte, G.; Di Nardo, P.; Licoccia, S.; Traversa, E. Stem Cell Aligned Growth Induced by CeO2 Nanoparticles in PLGA Scaffolds with Improved Bioactivity for Regenerative Medicine. Adv. Funct. Mater. 2010, 20 (10), 1617-1624. https://doi.org/10.1002/adfm.200902363
[17] Pautler, R.; Kelly, E.Y.; Huang, P.-J. J.; Cao, J.; Liu, B.; Liu, J. Attaching DNA to Nanoceria: Regulating Oxidase Activity and Fluorescence Quenching. ACS Appl. Mater. Interfaces 2013, 5 (15), 6820-6825. https://doi.org/10.1021/am4018863
[18] Liu, B.; Sun, Z.; Huang, P.-J.J.; Liu, J. Hydrogen Peroxide Displacing DNA from Nanoceria: Mechanism and Detection of Glucose in Serum. J. Am. Chem. Soc. 2015, 137 (3), 1290-1295. https://doi.org/10.1021/ja511444e
[19] Huang, C.-J.; Lin, Z.-E.; Yang, Y.-S.; Chan, H.W.-H.; Chen, W.-Y. Neutralized Chimeric DNA Probe for Detection of Single Nucleotide Polymorphism on Surface Plasmon Resonance Biosensor. Biosens. Bioelectron. 2018, 99, 170-175. https://doi.org/10.1016/j.bios/2017.07.052
[20] Liu, B.; Liu, J. Accelerating Peroxidase Mimicking Nanozymes Using DNA. Nanoscale 2015, 7, 13831-13835. https://doi.org/10.1039/C5NR04176G
[21] Thurn, K.T.; Paunescu, T.; Wu, A.; Brown, E.M.B.; Lai, B.; Vogt, S.; Maser, J.; Aslam, M.; Dravid, V.; Bergan, R. et al. Labeling TiO2 Nanoparticles with Dyes for Optical Fluorescence Microscopy and Determination of TiO2–DNA Nanoconjugate Stability. Small 2009, 5 (11), 1318-1325. https://doi.org/10.1002/smll.200801458
[22] Bülbül, G.; Hayat, A.; Andreescu, S. ssDNA-Functionalized Nanoceria: A Redox-Active Aptaswitch for Biomolecular Recognition. Adv. Healthc. Mater. 2016, 5 (7), 822-828. https://doi.org/10.1002/adhm.201500705
[23] Kim, M.I.; Park, K.S.; Park, H.G. Ultrafast Colorimetric Detection of Nucleic Acids Based on the Inhibition of the Oxidase Activity of Cerium Oxide Nanoparticles. Chem. Comm. 2014, 50, 9577-9580. https://doi.org/10.1039/C4CC03841J
[24] Costa, D.; Garrain, P.-A.; Baaden, M. Understanding Small Biomolecule-Biomaterial Interactions: A Review of Fundamental Theoretical and Experimental Approaches for Biomolecule Interactions with Inorganic Surfaces. J. Biomed. Mater. Res. A., 2013, 101A (4), 1210-1222. https://doi.org/10.1002/jbm.a.34416
[25] Westall, J.C.; Hohl, H. A Comparison of Electrostatic Models for the Oxide/Solution Interface. Adv. Colloid Interface Sci. 1980, 12 (4), 265-294. https://doi.org/10.1016/0001-8686(80)80012-1
[26] Cristl, I.; Kretzschmar ,R. Competitive Sorption of Copper and Lead at the Oxide-Water Interface: Implications for Surface Site Density. Geochim. Cosmochim. Acta 1999, 63 (19-20), 2929-2938. https://doi.org/10.1016/S0016-7037(99)00266-5
[27] Ludwig, Chr. GRFIT, a Program for Solving Speciation Problems, Evaluation of Equilibrium Constants, Concentrations, and Other Physical Parameters; Internal Report of University of Bern, 1992.
[28] Davis, J.A.; Kent D.B. Surface Complexation Modeling in Aqueous Geochemistry. In Mineral-Water Interface Geochemistry; Hochella, M.F,; White, A.F., Eds.; California, USA., 1990; pp 177-260. https://doi.org/10.1515/9781501509131
[29] Kosmulski, M. Chemical Properties of Materials Surfaces; Marcel Dekker: New York – Basel, 2001.
[30] Saenger, W. Principles of Nucleic Acid Structure; Springer: New York, 1984.
[31] Smith, R.M.; Martell, A.E.; Chen, Y. Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and the accompanying enthalpy changes. Pure Appl. Chem. 1991, 63 (7), 1015-1080. https://doi.org/10.1351/pac199163071015
[32] Thaplyal, P.; Bevilacqua, P.C. Chapter Nine - Experimental Approaches for Measuring pKa’s in RNA and DNA. Methods Enzymol. 2014, 549, 189-219. https://doi.org/10.1016/B978-0-12-801122-5.00009-X
[33] Childs, C.W. Potentiometric Study of Equilibriums in Aqueous Divalent Metal Orthophosphate Solutions. Inorg. Chem. 1970, 9 (11), 2465-2269. https://doi.org/10.1021/ic50093a017
[34] Galal-Gorchev, H.; Stumm, W.J. The Reaction of Ferric Iron with ortho-Phosphate. J. Inorg. Nucl. Chem. 1963, 25 (5), 567-574. https://doi.org/10.1016/0022-1902(63)80243-2
[35] Martell, A.E.; Smith, R.M. Critical Stability Constants. V. 4. Inorganic Complexes; Springer: New York, 1974.
[36] Connor, P.A.; McQuillan, A.J. Phosphate Adsorption onto TiO2 from Aqueous Solutions:  An in Situ Internal Reflection Infrared Spectroscopic Study. Langmuir 1999, 15 (8), 2916-2921. https://doi.org/10.1021/la980894p
[37] Michelmore, A.; Gong, W.; Jenkins, P.; Ralston, J. The Interaction of Linear Polyphosphates with Titanium Dioxide Surfaces. Phys. Chem. Chem. Phys. 2000, 2, 2985-2992. https://doi.org/10.1039/B001213K
[38] Gong, W. A Real Time in Situ ATR-FTIR Spectroscopic Study of Linear Phosphate Adsorption on Titania Surfaces. Int. J. Miner. Process. 2001, 63 (3), 147-164. https://doi.org/10.1016/S0301-7516(01)00045-X
[39] Rahnemaie, R.; Hiemstra, T.; Van Riemsdijk, W.H. Geometry, Charge Distribution, and Surface Speciation of Phosphate on Goethite. Langmuir 2007, 23 (7), 3680-3689. https://doi.org/10.1021/la062965n
[40] Kang, S.A.; Li, W.; Lee, H.E.; Phillips, B.L.; Lee, Y.J. Phosphate Uptake by TiO2: Batch Studies and NMR Spectroscopic Evidence for Multisite Adsorption. J. Colloid Interface Sci. 2011, 364 (2), 455-461. https://doi.org/10.1016/j.jcis2011.07.088
[41] Tielens, F.; Gervais, C.; Deroy, G.; Jaber, M.; Stievano, L.; Diogo, C.C.; Lambert, J.-F. Characterization of Phosphate Species on Hydrated Anatase TiO2 Surfaces. Langmuir 2016, 32 (4), 997-1008. https://doi.org/10.1021/acs.langmuir.5b03519
[42] Feuillie, C.; Sverjensky, D.A.; Hazen, R.M. Attachment of Ribonucleotides on α-Alumina as a Function of pH, Ionic Strength, and Surface Loading. Langmuir 2015, 31 (1), 240-248. https://doi.org/10.1021/la504034k