Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Вплив бісфеноло-формальдегідної смоли на фізико-механічні властивості дорожніх бітумів

Yuriy Demchuk1,2, Myroslava Donchenko1, Olena Astakhova1, Volodymyr Gunka1, Iryna Drapak2, Marta Sulyma2, Michael Bratychak1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2 Danylo Halytsky Lviv National Medical University, 69 Pekarska St., 79010 Lviv, Ukraine yuriy_demchuk@ukr.net
DOI: 
https://doi.org/10.23939/chcht18.01.023
AttachmentSize
PDF icon full_text.pdf392.88 KB
Abstract: 
Методом поліконденсації бісфенолу А з формальдегідом синтезовано бісфеноло-формальдегідну смолу. Проведено модифікування дорожніх бітумів цією смолою. За різного вмісту синтезованої смоли встановлено можливість її використання як модифікатора дорожнього нафтового бітуму. Встановлено, що введення в склад бітуму синтезованої бісфеноло-формальдегідної смоли значно підвищує його теплостійкість. Проведено ІЧ- спектроскопічний аналіз синтезованої смоли та модифікованих нею бітумів. Описано зміну складу та властивостей бітуму, модифікованого бісфеноло-формальдегідною смолою.
References: 

[1] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934–1952. https://doi.org/10.3390/coatings12121934
[2] Hrynchuk, Yu.; Sidun, Iu.; Gunka, V.; Prysiazhnyi, Yu.; Reutskyy, V.; Mosiuk, M. Epoxide of Rapeseed Oil-Modifier for Bitumen and Asphalt Concrete. Pet. Coal 2019, 61, 836–842.
[3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
[4] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
[5] Nagurskyy, A.; Khlibyshyn, Y.; Grynyshyn, O. Bitumen Compositions for Cold Applied Roofing Products. Chem. Chem. Technol. 2017, 11, 226–229. https://doi.org/10.23939/chcht11.02.226
[6] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
[7] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y., Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[8] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420–429.
[9] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456–461. https://doi.org/10.23939/chcht12.04.456
[10] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
[11] Geckil, T.; Seloglu, M. Performance Properties Of Asphalt Modified With Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
[12] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-Temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
[13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence Of Initiators On The Adhesion Properties Of Bitumen Modified By Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142–147. https://doi.org/10.23939/chcht15.01.142
[14] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Materials Today: Proceedings 2022, 51, 1197–1200. https://doi.org/10.1016/j.matpr.2021.07.206
[15] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure And Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69–76. https://doi.org/10.23939/chcht09.01.069
[16] Çubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324–1328. https://doi.org/10.1016/j.fuel.2008.12.024
[17] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
[18] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory investigation on the properties of polyurethane/unsaturated polyester resin modified bituminous mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
[19] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684–700. https://doi.org/10.1080/14680629.2020.1828154
[20] Çubuk, M.; Gürü, M.; Çubuk, M.K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
[21] Gupta, A.; Chopra, E. A. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. Technol. 2019, 10, 1386–1392. https://ssrn.com/abstract=3457096
[22] Saha, S.K.; Suman, S.K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
[23] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
[24] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
[25] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal. 2018, 60, 1199–1206.
[26] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. In International Scientific Conference EcoComfort and Current Issues of Civil Engineering; Springer, Cham., 2020; pp. 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
[27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int J Adhes Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
[28] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2020, 22, 2906–2918. https://doi.org/10.1080/14680629.2020.1808518
[29] EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
[30] EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
[31] EN 12596:2018, Bitumen and bituminous binders. Determination of dynamic viscosity by vacuum capillary, 2018.
[32] EN 12595:2018, Bitumen and bituminous binders. Determination of kinematic viscosity, 2018.
[33] EN 12592:2018, Bitumen and bituminous binders. Determination of solubility, 2018.
[34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
[35] EN 12593, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015.
[36] EN 12591, Bitumen and bituminous binders. Specifications for paving grade bitumens, 2009.
[37] Knop A., Scheib W. Chemistry and Application of Phenolic Resins. Springer-Verlag: Berlin, Heidelberg, New York, 1979.
[38] Bratychak, M.M.; Getmanchuk, Y.P. Khimichna tekhnolohiya syntezu vysokomolekulyarnykh spoluk; Lvivska politekhnyka: Lviv, 2009.
[39] Parker, F.S. Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine; Springer: New York, 1971.