Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Синтез, сорбційні властивості та оцінка силікагелю з адсорбованим полі[8-оксихінолінметакрилатом] як сорбенту іонів Сu(ІІ), Сd(ІІ), Рb(ІІ) та Fe(ІІІ)

Irina Savchenko1, Elina Yanovska1, Dariusz Sternik2, Olga Kychkyruk3
Affiliation: 
1 Taras Shevchenko National University of Kyiv, 12 L. Tolstogo St., 01033 Kyiv, Ukraine. 2 Maria Curie-Skłodowska University, Maria Curie-Sklodowska Sq., 20-031 Lublin, Poland. 3 Ivan Franko Zhytomyr State University, 42 Pushkina Str., 10008 Zhytomyr, Ukraine. irassavchenko@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.01.045
AttachmentSize
PDF icon full_text.pdf579.63 KB
Abstract: 
У цьому дослідженні новий функціоналізований кремнеземний композит отриманий у результаті адсорбції полі[8-оксихінолінметакрилату] на поверхні силіка¬гелю. Як адсорбент для видалення з води іонів Cu(II), Cd(II), Pb(II), Fe(III) ми використовували полімерно функціоналізований силікагель. Іммобілізація полі[8-оксихінолінметакрилату] на поверхні силікагелю була підтверджена за допомогою ІЧ-спектроскопії та термогравіметричного аналізу в поєднанні з мас-спектрометрією. Скануюча електронна мікроскопія показала, що полімер майже повністю покриває поверхню силі¬кагелю. В результаті значно зменшується пористість поверхні мінералу. Досліджено процеси сорбції іонів Cu(II), Cd(II), Pb(II), Fe(III) на поверхні синтезованого композиту в статичному режимі.
References: 

[1] Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220-229. https://doi.org/10.1016/j.jhazmat.2008.01.024
[2] Özcan, A.S.; Gök , Ö.; Özcan, A. Adsorption of Lead(II) Ions onto 8-Hydroxy Quinoline-Immobilized Bentonite. J. Hazard. Mater. 2009, 161, 499-509. https://doi.org/10.1016/j.jhazmat.2008.04.002
[3] Yanovska, E.; Savchenko, I.; Petrenko, O.; Davydov, V. Adsorption of Some Toxic Metal Ions on Pine Sawdust in situ Immobilized by Polyaniline. Appl. Nanosci. 2022, 12, 861-868. https://doi.org/10.1007/s13204-021-01862-z
[4] Savchenko, I.; Yanovska, E.; Polonska, Y.; Sternik, D.; Kychkiruk, O.; Ol’khovik, L. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Polymer-Based Azobenzene on Toxic Metal Ions. Appl. Nanosci. 2019, 9(5), 657-664. https://doi.org/10.1007/s13204-018-0734-8
[5] Savchenko, I.; Yanovska, E.; Polonska, Y.; Ol’khovik, L.; Sternik, D.; Kychkiruk, O. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[4-methacroyloxy-(4’-carboxy-2’-nitro)-azobenzene] On Toxic Metals Ions. Mol. Cryst. Liq. Cryst. 2018, 671, 164-174. https://doi.org/10.1080/15421406.2018.1542099
[6] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14(3), 386-393. https://doi.org/10.23939/chcht14.03.386
[7] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O.; Ol’khovik, L.; Buriachenko, I. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[N-(4-carboxyphenyl) methacrylamide] on Toxic Metal Ions. Nanoscale Res. Lett. 2017, 12, 313. https://doi.org/10.1186/s11671-017-2066-0
[8] Chen, L.; Ji, T.; Mu, L.; Shi, Y.; Brisbin, L.; Guo, Z.; Khan, M.A.; Young, D.P.; Zhu, J. Facile Synthesis of Mesoporous Carbon Nanocomposites from Natural Biomass for Efficient Dye Adsorption and Selective Heavy Metal Removal. RSC Adv. 2016, 6, 2259-2269. https://doi.org/10.1039/c5ra19616g
[9] Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel(II) from Aqueous Solution. J. Hazard Mater. 2011, 186, 160-168. https://doi.org/10.1016/j.jhazmat.2010.10.102
[10] Ji, F.; Li, C.; Tang, B.; Xu, J., Lu, G.; Liu, P. Preparation of Cellulose Acetate/Zeolite Composite Fiber and its Adsorption Behavior for Heavy Metal Ions in Aqueous Solution. Chem. Eng. J. 2012, 209, 325-333. https://doi.org/10.1016/j.cej.2012.08.014
[11] Yanovska, E.; Savchenko, I.; Sternik, D.; Kychkiruk, O. Adsorption Properties of Natural Alumosilicate Ukrainian Minerals, in situ Modified by Poly[8-methacroyloxy-quinoline] to Pb(ІІ), Mn(ІІ), Cu(ІІ) and Fe(ІІІ) Ions. Mol. Cryst. Liq. Cryst. 2021, 717, 1-13. https://doi.org/10.1080/15421406.2020.1859704
[12] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O. Synthesis of Organo-Inorganic Composite Based on Clinoptilolite (Ukraine), in situ Modified Poly[8-oxyquinoline methacrylate] and its Sorption Properties with Respect to Toxic Metal Ions. Funct. Mater. 2021, 28(3), 597-604. https://doi.org/10.15407/fm28.03.597
[13] Chuiko, A.A. Silica surface chemistry. Part 1; Center UkrINTEI: Kyiv, 2001.
[14] Al-Maliki, S.; Al-Khayat, Z.; Abdulrazzak, I.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16(2), 255-258. https://doi.org/10.23939/chcht16.02.255
[15] Bernal, J.P.; De San Miguel, E.R.; Aguilar, J.C.; Salazar, G.; De Gyves, J. Adsorption of metallic cations on silica gel-immobilized 8-hydroxyquinoline. Sep. Sci. Technol. 2000, 35, 1661-1679. https://doi.org/10.1081/SS-100100247
[16] Willie, S.N.; Tekgul, H.; Sturgeon, R.E. Immobilization of 8-Hydroxyquinoline onto Silicone Tubing for the Determination of Trace-Elements in Seawater Using Flow-Injection ICP-MS. Тalanta 1998, 47, 439-445. https://doi.org/10.1016/s0039-9140(98)00153-2
[17] Lührmann, M.; Stelter, N.; Kettrup, A. Synthesis and Properties of Metal Collecting Phases with Silica Immobilized 8-Hydroxyquinoline. Fresenius Z. Anal. Chem. 1985, 322, 45–52. https://doi.org/10.1007/bf00493041
[18] Sugawara, K.F.; Weetall, H.H.; Schucker, G.D. Preparation, Properties, and Applications of 8-Hydroxyquinoline Immobilized Chelate. Anal. Chem. 1974, 46(4), 489-492. https://doi.org/10.1021/ac60340a016
[19] Lan, C.-R.; Yang, M.-H. Synthesis, Properties and Applications of Silica-Immobilized 8-Quinolinol. Part 2. On-Line Column Preconcentration of Copper, Nickel and Cadmium from Sea Water and Determination by Inductively-Coupled Plasma Atomic Emission Spectrometry. Anal. Chim. Acta 1994, 287, 111-117. https://doi.org/10.1016/0003-2670(94)85108-5
[20] Shahata, M. Poly (8-Hydroxyquinoline) Properties, Different Methods for Characterization, and New Applications for Different Uses: Review Article. Eur. J. Appl. Sci. 2021, 9, 117-161. https://doi.org/10.14738/aivp.91.9409
[21] Ryabchenko, K.; Yanovskaya, E.; Tertykh, V.; Kichkiruk, O. Complexation of Transition Metals with 8-Hydroxyquinoline Chemically Fixed on the Surface of the Silica Gel-Polyaniline Composite. Zhurn. Neorg. Khimii 2013, 58, 413-419. http://eprints.zu.edu.ua/id/eprint/17709
[22] Landing, W.M.; Haraldsson, C.; Paxeus, N. Vinyl Polymer Agglomerate-Based Transition-Metal Cation Chelating Ion-Exchange Resin Containing the 8-Hydroxyquinoline Functional Group. Anal. Chem. 1986, 58(14), 3031-3035. https://doi.org/10.1021/ac00127a029
[23] Savchenko, I.; Yanovska, E.; Vretik, L.; Sternik, D.; Kychkyruk, O. Synthesis, Characterization and Adsorption Properties for Metal Ions of Silica-Gel Functionalized by Poly[8-methacroyloxy-quinoline]. Mol. Cryst. Liq. Cryst. 2021, 719, 103-115. https://doi.org/10.1080/15421406.2020.1862466