Synthesis, Sorption Properties, and Evaluation of Silica Gel with Adsorbed Poly[8-Oxyquinoline Methacrylate] as a Sorbent for Cu(II), Cd(II), Pb(II) and Fe(III) Ions

Irina Savchenko1, Elina Yanovska1, Dariusz Sternik2, Olga Kychkyruk3
1 Taras Shevchenko National University of Kyiv, 12 L. Tolstogo St., 01033 Kyiv, Ukraine. 2 Maria Curie-Skłodowska University, Maria Curie-Sklodowska Sq., 20-031 Lublin, Poland. 3 Ivan Franko Zhytomyr State University, 42 Pushkina Str., 10008 Zhytomyr, Ukraine.
PDF icon full_text.pdf579.63 KB
In the present study, a novel functionalized silica composite was prepared by adsorption of poly[8 oxyquinoline methacrylate] on the surface of silica gel. Immobilization of poly[8 oxyquinoline methacrylate] on the silica gel surface was confirmed using IR spectroscopy and thermogravimetric analysis combined with mass spectrometry. Scanning electron microscopy revealed that the polymer almost completely covers the surface of the silica gel in the form of agglomerates of different geometric shapes. The processes of sorption of Cu(II), Cd(II), Pb(II), and Fe(III) ions on the surface of the synthesized composite in the static mode have been studied.

[1] Demirbas, A. Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. J. Hazard. Mater. 2008, 157, 220-229.

[2] Özcan, A.S.; Gök , Ö.; Özcan, A. Adsorption of Lead(II) Ions onto 8-Hydroxy Quinoline-Immobilized Bentonite. J. Hazard. Mater. 2009, 161, 499-509.

[3] Yanovska, E.; Savchenko, I.; Petrenko, O.; Davydov, V. Adsorption of Some Toxic Metal Ions on Pine Sawdust in situ Immobilized by Polyaniline. Appl. Nanosci. 2022, 12, 861-868.

[4] Savchenko, I.; Yanovska, E.; Polonska, Y.; Sternik, D.; Kychkiruk, O.; Ol'khovik, L. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Polymer-Based Azobenzene on Toxic Metal Ions. Appl. Nanosci. 2019, 9(5), 657-664.

[5] Savchenko, I.; Yanovska, E.; Polonska, Y.; Ol'khovik, L.; Sternik, D.; Kychkiruk, O. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[4-methacroyloxy-(4'-carboxy-2'-nitro)-azobenzene] On Toxic Metals Ions. Mol. Cryst. Liq. Cryst. 2018, 671, 164-174.

[6] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14(3), 386-393.

[7] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O.; Ol'khovik, L.; Buriachenko, I. In situ Immobilization on the Silica Gel Surface and Adsorption Capacity of Poly[N-(4-carboxyphenyl) methacrylamide] on Toxic Metal Ions. Nanoscale Res. Lett. 2017, 12, 313.

[8] Chen, L.; Ji, T.; Mu, L.; Shi, Y.; Brisbin, L.; Guo, Z.; Khan, M.A.; Young, D.P.; Zhu, J. Facile Synthesis of Mesoporous Carbon Nanocomposites from Natural Biomass for Efficient Dye Adsorption and Selective Heavy Metal Removal. RSC Adv. 2016, 6, 2259-2269.

[9] Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel(II) from Aqueous Solution. J. Hazard Mater. 2011, 186, 160-168.

[10] Ji, F.; Li, C.; Tang, B.; Xu, J., Lu, G.; Liu, P. Preparation of Cellulose Acetate/Zeolite Composite Fiber and its Adsorption Behavior for Heavy Metal Ions in Aqueous Solution. Chem. Eng. J. 2012, 209, 325-333.

[11] Yanovska, E.; Savchenko, I.; Sternik, D.; Kychkiruk, O. Adsorption Properties of Natural Alumosilicate Ukrainian Minerals, in situ Modified by Poly[8-methacroyloxy-quinoline] to Pb(ІІ), Mn(ІІ), Cu(ІІ) and Fe(ІІІ) Ions. Mol. Cryst. Liq. Cryst. 2021, 717, 1-13.

[12] Savchenko, I.; Yanovska, E.; Sternik, D.; Kychkiruk, O. Synthesis of Organo-Inorganic Composite Based on Clinoptilolite (Ukraine), in situ Modified Poly[8-oxyquinoline methacrylate] and its Sorption Properties with Respect to Toxic Metal Ions. Funct. Mater. 2021, 28(3), 597-604.

[13] Chuiko, A.A. Silica surface chemistry. Part 1; Center UkrINTEI: Kyiv, 2001.

[14] Al-Maliki, S.; Al-Khayat, Z.; Abdulrazzak, I.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16(2), 255-258.

[15] Bernal, J.P.; De San Miguel, E.R.; Aguilar, J.C.; Salazar, G.; De Gyves, J. Adsorption of metallic cations on silica gel-immobilized 8-hydroxyquinoline. Sep. Sci. Technol. 2000, 35, 1661-1679.

[16] Willie, S.N.; Tekgul, H.; Sturgeon, R.E. Immobilization of 8-Hydroxyquinoline onto Silicone Tubing for the Determination of Trace-Elements in Seawater Using Flow-Injection ICP-MS. Тalanta 1998, 47, 439-445.

[17] Lührmann, M.; Stelter, N.; Kettrup, A. Synthesis and Properties of Metal Collecting Phases with Silica Immobilized 8-Hydroxyquinoline. Fresenius Z. Anal. Chem. 1985, 322, 45-52.

[18] Sugawara, K.F.; Weetall, H.H.; Schucker, G.D. Preparation, Properties, and Applications of 8-Hydroxyquinoline Immobilized Chelate. Anal. Chem. 1974, 46(4), 489-492.

[19] Lan, C.-R.; Yang, M.-H. Synthesis, Properties and Applications of Silica-Immobilized 8-Quinolinol. Part 2. On-Line Column Preconcentration of Copper, Nickel and Cadmium from Sea Water and Determination by Inductively-Coupled Plasma Atomic Emission Spectrometry. Anal. Chim. Acta 1994, 287, 111-117.

[20] Shahata, M. Poly (8-Hydroxyquinoline) Properties, Different Methods for Characterization, and New Applications for Different Uses: Review Article. Eur. J. Appl. Sci. 2021, 9, 117-161.

[21] Ryabchenko, K.; Yanovskaya, E.; Tertykh, V.; Kichkiruk, O. Complexation of Transition Metals with 8-Hydroxyquinoline Chemically Fixed on the Surface of the Silica Gel-Polyaniline Composite. Zhurn. Neorg. Khimii 2013, 58, 413-419.

[22] Landing, W.M.; Haraldsson, C.; Paxeus, N. Vinyl Polymer Agglomerate-Based Transition-Metal Cation Chelating Ion-Exchange Resin Containing the 8-Hydroxyquinoline Functional Group. Anal. Chem. 1986, 58(14), 3031-3035.

[23] Savchenko, I.; Yanovska, E.; Vretik, L.; Sternik, D.; Kychkyruk, O. Synthesis, Characterization and Adsorption Properties for Metal Ions of Silica-Gel Functionalized by Poly[8-methacroyloxy-quinoline]. Mol. Cryst. Liq. Cryst. 2021, 719, 103-115.