Синтез гетероциклічних халконів димерної структури на основі піридину
Attachment | Size |
---|---|
full_text.pdf | 373.14 KB |
Keywords:
[1] Achanta, G.; Modzelewska, A.; Feng, L.; Khan, S.R.; Huang P. A Boronic-Chalcone Derivative Exhibits Potent Anticancer Activity through Inhibition of the Proteasome. Mol. Pharmacol. 2005, 70, 426-433. https://doi.org/10.1124/mol.105.021311
[2] Bukhari, S.N.A.; Jasamai, M.; Jantan, I.; Ahmad, W. Review of Methods and Various Catalysts Used for Chalcone Synthesis. Mini Rev. Org. Chem. 2013, 10, 73-83. https://doi.org/10.2174/1570193X11310010006
[3] Bukhari, S.; Jasamai, M.; Jantan, I. Synthesis and Biological Evaluation of Chalcone Derivatives (Mini Review). Mini Rev. Med. Chem. 2012, 12, 1394-1403. https://doi.org/10.2174/138955712804586648
[4] Saydam, G.; Aydin, H.H.; Şahin, F.; Kucukoglu, O.; Erciyas, E.; Terzioglu, E.; Buyukkeçeci, F.; Omay, S.B. Cytotoxic and Inhibitory Effects of 4,4′-Dihydroxy Chalcone (RVC-588) on Proliferation of Human Leukemic HL-60 Cells. Leukemia Res. 2003, 27, 57-64. https://doi.org/10.1016/S0145-2126(02)00058-9
[5] Mishra, L.; Itokawa, H.; Bastow, K.F.; Tachibana, Y.; Nakanishi, Y.; Kilgore, N.; Lee, K.-H.; Sinha, R. Anti-HIV and Cytotoxic Activities of Ru(II)/Ru(III) Polypyridyl Complexes Containing 2,6-(2′-Benzimidazolyl)-pyridine/chalcone as Co-Ligand. Bioorg. Med. Chem. 2001, 9, 1667-1671. https://doi.org/10.1016/S0968-0896(01)00074-8
[6] Ko, H.-H.; Tsao, L.-T.; Yu, K.-L.; Liu, C.-T.; Wang, J.-P.; Lin, C.-N. Structure–Activity Relationship Studies on Chalcone Derivatives: The Potent Inhibition of Chemical Mediators Release. Bioorg. Med. Chem. 2003, 11, 105-111. https://doi.org/10.1016/S0968-0896(02)00312-7
[7] Tuchinda, P.; Reutrakul, V.; Claeson, P.; Pongprayoon, U.; Sematong, T.; Santisuk, T.; Taylor, W.C. Anti-Inflammatory Cyclohexenyl Chalcone Derivatives in Boesenbergia Pandurate. Phytochem. 2002, 59, 169-173. https://doi.org/10.1016/S0031-9422(01)00451-4
[8] Bukhari, S.N.A.; Jantan, I.B.; Jasamai, M.; Ahmad, W.; Amjad, M.W.B. Synthesis and Biological Evaluation of Curcumin Analogues. Mini Rev. Med. Chem. 2013, 13, 501-513. https://doi.org/10.3923/jms.2013.501.513
[9] Domínguez, J.N.; León, C.; Rodrigues, J.; de Domínguez, N.G.; Gut, J.; Rosenthal, P.J. Synthesis and Evaluation of New Antimalarial Phenylurenyl Chalcone Derivatives. J. Med. Chem. 2005, 48, 3654-3658. https://doi.org/10.1021/jm058208o
[10] Shin, D.-M.; Song, D.-M.; Jung, K.-H.; Moon, J.-H. Photochemical Transformation of Chalcone Derivatives. J. Photosci. 2001, 8, 9-12.
[11] Suwunwong, T. Syntheses and Fluorescent Properties of Chalcone Derivatives and Heteroarylchalcones. MSc thesis, Prince of Songkla University, Thailand, 2010.
[12] Chudgar, N.K.; Shah, S.N. New Fluorescent Mesogens with a Chalcone Central Linkage. Liq. Cryst. 1989, 4, 661-668. https://doi.org/10.1080/02678298908033201
[13] Yeap, G.-Y.; Susanti, I.; Teoh, B.-S.; Mahmood, W.A.K.; Harrison, W.T.A. Synthesis and Phase Transition in New Chalcone Derivatives: Crystal Structure of 1-Phenyl-3-(4′-undecylcarbonyloxyphenyl)-2-propen-1-one. Mol. Cryst. Liq. Cryst. 2005, 442, 133-146. https://doi.org/10.1080/154214090964753
[14] Thaker, B.T.; Patel, P.H.; Vansadiya, A.D.; Kanojiya, J.D. Substitution Effects on the Liquid Crystalline Properties of Thermotropic Liquid Crystals Containing Schiff Base Chalcone Linkages. Mol. Cryst. Liq. Cryst. 2009, 515, 135-147. https://doi.org/10.1080/15421400903291533
[15] Ha, S.T.; Low, Y.W. Synthesis and Phase Transition Behaviours of New Chalcone Derivatives. J. Chem. 2013, 2013. https://doi.org/10.1155/2013/943723
[16] Lim, Y.-W.C.; Ha, S.-T.; Yeap, G.-Y.; Sastry, S.S. Synthesis and Mesomorphic Properties of New Heterocyclic Liquid Crystals with Central Ester–Chalcone Linkages. J. Taibah Univ. Sci. 2017, 11, 133-140. https://doi.org/10.1016/j.jtusci.2015.12.004
[17] Collings, P.J.; Hilger, A. Liquid Crystal: Nature’s Delicate Phase of Matter. IOP Publishing Ltd.: Bristol, 1990.
[18] Yeap, G.-Y.; Al-Taifi, E.A.; Ong, C.-H.; Mahmood, W.A.K.; Takeuchi, D.; Ito, M.M. Synthesis and Phase Transition Studies on Non-Symmetric Liquid Crystal Dimers: N-(4-(n-(4-(Benzothiazol-2-yl)phenoxy)alkyloxy)-benzylidene)-4-chloroanilines. Phase Trans. 2012, 85, 483-496. https://doi.org/10.1080/01411594.2011.624278
[19] Prajapati, A.K.; Bonde, N.L.; Patel, H.N. Mesogenic Schiff's Base Ester with Chloroethyl Tail. Phase Trans. 2005, 78, 507-513. https://doi.org/10.1080/01411590500188876
[20] Parameswara Rao Alapati; Bhuyan, D.; Madhavi Latha, D.; Pardhasaradhi, P.; Pisipati, V.G.K.M.; Datta Prasad, P.V.; Singh, K.N. Study of Molecular Polarizabilities and Orientational Order Parameter in the Nematic Phase of 6.O12O.6 and 7.O12O.7. World J. Condens. Matt. Phys. 2011, 1, 167-174. https://doi.org/10.4236/wjcmp.2011.14025
[21] Gogoi, B.; Alapati, P.R.; Verma, A.L. Phase Transition Studies in Mesogenic Dimers. Cryst. Res. Technol. 2002, 37, 1331-1337. https://doi.org/10.1002/crat.200290010
[22] Yeap, G.-Y.; Hng, T.-C.; Takeuchi, D.; Osakada, K.; Mahmood, W.A.K.; Ito, M.M. Non-Symmetric Liquid Crystal Dimers: High Thermal Stability in Nematic Phase Enhanced by Thiophene-2-Carboxylate Moiety. Mol. Cryst. Liq. Cryst. 2009, 506, 134-149. https://doi.org/10.1080/15421400902987248
[23] Vill, V. Liquid Crystals, Molecular Design of: Calamitics. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J.; Cahn, R.W.; Flemings, M.C.; Ilschner, B.; Kramer, E.J.; Mahajan, S.; Veyssière, P., Eds.; Elsevier Science Ltd, 2001; pp 4545-4550. https://doi.org/10.1016/B0-08-043152-6/00796-8