Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Розумне вікно на основі холестеричного рідкокристалічного дзеркала, кероване температурою навколишнього середовища

Gia Petriashvili1, Tamaz Sulaberidze1, David Tavkhelidze2, Mikheil Janikashvili2, Nino Ponjavidze1, Andro Chanishvili1, Ketevan Chubinidze1, Tamara Tatrishvili3,4, Tamar Makharadze1, Elene Kalandia1, Riccardo Barberi5, Maria Penelope De Santo5
Affiliation: 
1 Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, 5 Z. Andjzaparidze St., Tbilisi, 0186, Georgia 2 Georgian Technical University, M. Kostava St. 77, Tbilisi 0171, Tbilisi, Georgia 3 Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, 1 I. Chavchavadze Ave., Tbilisi, 0179, Georgia 4 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, 2 University St Tbilisi, 0186, Georgia 5 CNR-IPCF, UOS Cosenza, Physics Department, University of Calabria, Rende (Cs), 87036, Italy g.petriashvili@yahoo.co.uk
DOI: 
https://doi.org/10.23939/chcht18.03.401
AttachmentSize
PDF icon full_text.pdf672.98 KB
Abstract: 
У цій статті автори описують невеликий прототип розумного вікна на основі термооптичних властивостей холестеричних рідких кристалів. Завдяки своїй безполімерній конструкції виготовлене розумне вікно є прозорим і може відбивати певні порції видимого або інфрачервоного світла, не потребуючи зовнішнього джерела живлення, а, отже, є простішим в установці й експлуатації. Запропонована технологія розумного вікна на основі холестеричного рідкокристалічного дзеркала дозволить зменшити витрати на енергоспоживання завдяки відбиттю надлишкового сонячного світла та теплопередачі, підвищуючи комфорт для мешканців будівель і споруд.
References: 

[1] Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonization. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2021, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
[2] Niu, Y.; Zhou Y.; Du, D.; Ouyang, X.; Yang, Z.; Lan, W.; Fan, F.; Zhao, S.; Liu, Y.; Chen, S.; Li, J.; and Q. Xu. Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions. Adv. Sci. 2022, 9, 2105184. https://doi.org/10.1002/advs.202105184
[3] Ariosto, T.; Memari, A. M.; Solnosky, R. L. Development of Designer Aids for Energy Efficient Residential Window Retrofit Solutions. Sustainable Energy Technol. Assess. 2019, 33, 1–13. https://doi.org/10.1016/j.seta.2019.02.007
[4] Amirkhani, S.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Impact of Low-E Window Films on Energy Consumption and CO2 Emissions of an Existing UK Hotel Building. Sustainability 2019, 11, 4265. https://doi.org/10.3390/su11164265
[5] Moghaddam, S.A.; Mattsson, M.; Ameen, A.; Akander, J.; Gameiro Da Silva, M.; Simões, N. Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate. Energies 2021, 14, 1–28. https://doi.10.3390/en14227584
[6] Lampert, C.M. Large–Area Smart Glass and Integrated Photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489– 499. https://doi.org/10.1016/S0927-0248(02)00259-3
[7] Georg, A.; George, A.; Graf, W.; Wittwer, V. Switchable Windows with Tungsten Oxide. Vacuum 2008, 82, 730–735. https://doi.10.1016/j.vacuum.2007.10.020
[8] Badour, Y.; Jubera, V.; Andron, I.; Frayret, C.; Gaudon, M. Photochromism in Inorganic Crystallised Compounds. Opt. Mater. 2021, 12, 100110. https://doi.org/10.1016/j.omx.2021.100110
[9] Zhang, J.; Zou, Q.; and Tian, H. Photochromic Materials: More Than Meets the Eye. Adv. Mater. 2013, 25, 378–399. https://doi.org/10.1002/adma.201201521
[10] Zou, Y.; Yi, T.; Xiao, Sh.; Li, F.; Li, Ch.; Gao, X.; Wu, J.; Yu, M.; Huang, Ch. Amphiphilic Diarylethene as a Photoswitchable Probe for Imaging Living Cells. J. Am. Chem. Soc. 2008, 130, 15751–1575. https://doi.org/10.1021/ja8043163
[11] Jaik, Th. G.; Ciubini, B.; Frascella F.; and Jonas, U. Thermal Response and Thermochromism of Methyl Red-Based Copolymer Systems – Coupled Responsiveness in Critical Solution Behaviour and Optical Absorption Properties. Polym. Chem. 2022, 13, 1186–1214. https://doi.org/10.1039/D1PY01361K
[12] Somani, P. R.; Radhakrishnan, S. Electrochromic Materials and Devices: Present and Future. Mater. Chem. Phys. 2002, 77, 117–133. https://doi.org/10.1016/S0254-0584(01)00575-2
[13] Han, M.; Cho, Ch. H.; Jang, H.; Kim, E. Black-to-Transparent Electrochromic Capacitive Windows Based on Conjugated Polymers. J. Mater. Chem. A 2021, 9, 16016–16027. https://doi.org/10.1039/D1TA02996G
[14] Bouas-Laurent, H.; Durr, H. Organic Photochromism. Pure Appl. Chem. 2001, 73, 639–665. http://dx.doi.org/10.1351/pac200173040639
[15] Wiedemann, U.; Alt, W.; Meschede, D. Switching Photochromic Molecules Adsorbed on Optical Microfibers. Opt. Express 2012, 20, 12710–12720. https://doi.org/10.1364/OE.20.012710
[16] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499
[17] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
[18] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35–44. https://doi.org/10.23939/chcht17.01.035
[19] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili; G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
[20] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili; G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807
[21] Huang, Y.; Zhou, Y.; Doyle, C.; Wu, Sh.-Ts. Tuning the Photonic Band Gap in Cholesteric Liquid Crystals by Temperature Dependent Dopant Solubility. Opt. Express 2006, 14, 1236–1242. https://doi.org/10.1364/OE.14.001236
[22] Ritacco, T.; Aceti, D. M.; Domenico, G. De.; Giocondo, M.; Mazzulla, A.; Cipparrone, G.; and Pagliusi, P. Tuning Cholesteric Selective Reflection In Situ Upon Two-Photon Polymerization Enables Structural Multicolor 4D Microfabrication. Adv. Optical Mater. 2022, 10, 1–9. https://doi.org/10.1002/adom.202101526
[23] Lu, H. B.; Xie, X. Y.; Xing, J.; Xu, C.; Wu, Z. Q.; Zhang, G. B.; Lv, G. Q.; Qiu, L. Z. Wavelength-Tuning and Band-Broadening of a Cholesteric Liquid Crystal Induced by a Cyclic Chiral Azobenzene Compound. Opt. Mater. Express 2016, 6, 3145–3158. https://doi.org/10.1364/OME.6.003145
[24] Xiang, J.; Li, Y.; Li, Q.; Paterson, D. A.; Storey, J. M. D.; Imrie, C. T.; Lavrentovich, O. D. Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics. Adv. Mater. 2015, 27, 3014–3018. https://doi.org/10.1002/adma.201500340
[25] Jing, T. Selective Reflection of Cholesteric Liquid Crystals. Science Insights 2022, 40, 515–517. https://doi.org/10.15354/si.22.re051
[26] Saadaoui, L.; Petriashvili, G.; De Santo, M. P.; Hamdi, R.; Othman, T.; Barberi, R. Electrically Controllable Multicolor Cholesteric Laser. Opt. Express 2015, 23, 22922–22927. https://doi.org/10.1364/OE.23.022922
[27] Chilaya, G.; Chanishvili, A.; Petriashvili, G.; Barberi, R.; Bartolino, R.; Cipparrone, G.; Mazzulla, A.; Shibaev, P. V. Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes. Adv. Mater. 2007, 19, 565–568. https://doi.org/10.1002/adma.200600353
[28] Qu, R.; Li, G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. Biosensors 2022, 12, 205. https://doi.org/10.3390/bios12040205
[29] Petriashvili, G.; Japaridze, K.; Devadze, L.; Zurabishvili, C.; Sepashvili, N.; Ponjavidze, N.; De Santo, M. P.; Matranga, M. A.; Hamdi, R.; Ciuchi, F.; et al. Paper Like Cholesteric Interferential Mirror. Opt. Express 2013, 21, 20821–20830. https://doi.org/10.1364/OE.21.020821
[30] Chen, Ch.-W.; Brigeman, A. N.; Ho, Ts.-J.; Khoo, I.C h. Normally Transparent Smart Window Based on Electrically Induced Instability in Dielectrically Negative Cholesteric Liquid Crystal. Optical Material Express 2018, 8, 691–697. https://doi.org/10.1364/OME.8.000691
[31] Tseng, H.-Yi.; Chang, Li-M.; Lin, K.-W.; Li, Ch.-Ch.; Lin, W.-H.; Wang, Ch.-T.; Lin, Ch.-W.; Liu Sh.-H.; Lin, Ts.-H. Smart Window with Active-Passive Hybrid Control. Materials 2020, 13, 4137. https://doi.org/10.3390/ma13184137
[32] Shen, W.; Li, G. Recent Progress in Liquid Crystal-Based Smart Windows: Materials, Structures, and Design. Laser Photonics Rev. 2023, 17, 2200207. https://doi.10.1002/lpor.202200207
[33] Zhang, R.; Zhang, Z.; Han, J.; Yang, L.; Li, J.; Song, Z.; Wang, T.; Zhu, J. Advanced Liquid Crystal-Based Switchable Optical Devices for Light Protection Applications: Principles and Strategies. Light Sci Appl 2023, 12, 11. https://doi.org/10.1038/s41377-022-01032-y
[34] An, C-H.; Choi, T-H.; Oh, S-W. Energy-Efficient Liquid Crystal Smart Window with a Clear View. Crystals 2023, 13, 1464. https://doi.org/10.3390/cryst13101464