Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Cholesteric Liquid Crystal Mirror-Based Smart Window Controlled with Ambient Temperature

Gia Petriashvili1, Tamaz Sulaberidze1, David Tavkhelidze2, Mikheil Janikashvili2, Nino Ponjavidze1, Andro Chanishvili1, Ketevan Chubinidze1, Tamara Tatrishvili3,4, Tamar Makharadze1, Elene Kalandia1, Riccardo Barberi5, Maria Penelope De Santo5
Affiliation: 
1 Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, 5 Z. Andjzaparidze St., Tbilisi, 0186, Georgia 2 Georgian Technical University, M. Kostava St. 77, Tbilisi 0171, Tbilisi, Georgia 3 Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, 1 I. Chavchavadze Ave., Tbilisi, 0179, Georgia 4 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, 2 University St Tbilisi, 0186, Georgia 5 CNR-IPCF, UOS Cosenza, Physics Department, University of Calabria, Rende (Cs), 87036, Italy g.petriashvili@yahoo.co.uk
DOI: 
https://doi.org/10.23939/chcht18.03.401
AttachmentSize
PDF icon full_text.pdf672.98 KB
Abstract: 
In this paper, the authors demonstrate a small prototype of a smart window based on the thermo-optical properties of cholesterol liquid crystals. Due to its polymer-free design, the manufactured smart window is transparent and can reflect certain portions of visible or infrared light without requiring an external power source, and thus is easier to install and operate. The proposed smart window technology based on a cholesteric liquid crystal mirror will reduce energy consumption costs by reflecting excess sunlight and heat transfer, increasing comfort for residents of buildings and structures.
References: 

[1] Santamouris, M.; Vasilakopoulou, K. Present and Future Energy Consumption of Buildings: Challenges and Opportunities towards Decarbonization. e-Prime - Advances in Electrical Engineering, Electronics and Energy 2021, 1, 100002. https://doi.org/10.1016/j.prime.2021.100002
https://doi.org/10.1016/j.prime.2021.100002

[2] Niu, Y.; Zhou Y.; Du, D.; Ouyang, X.; Yang, Z.; Lan, W.; Fan, F.; Zhao, S.; Liu, Y.; Chen, S.; Li, J.; and Q. Xu. Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions. Adv. Sci. 2022, 9, 2105184. https://doi.org/10.1002/advs.202105184
https://doi.org/10.1002/advs.202105184

[3] Ariosto, T.; Memari, A. M.; Solnosky, R. L. Development of Designer Aids for Energy Efficient Residential Window Retrofit Solutions. Sustainable Energy Technol. Assess. 2019, 33, 1-13. https://doi.org/10.1016/j.seta.2019.02.007
https://doi.org/10.1016/j.seta.2019.02.007

[4] Amirkhani, S.; Bahadori-Jahromi, A.; Mylona, A.; Godfrey, P.; Cook, D. Impact of Low-E Window Films on Energy Consumption and CO2 Emissions of an Existing UK Hotel Building. Sustainability 2019, 11, 4265. https://doi.org/10.3390/su11164265
https://doi.org/10.3390/su11164265

[5] Moghaddam, S.A.; Mattsson, M.; Ameen, A.; Akander, J.; Gameiro Da Silva, M.; Simões, N. Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate. Energies 2021, 14, 1-28. https://doi.10.3390/en14227584
https://doi.org/10.3390/en14227584

[6] Lampert, C.M. Large-Area Smart Glass and Integrated Photovoltaics. Sol. Energy Mater. Sol. Cells 2003, 76, 489- 499. https://doi.org/10.1016/S0927-0248(02)00259-3
https://doi.org/10.1016/S0927-0248(02)00259-3

[7] Georg, A.; George, A.; Graf, W.; Wittwer, V. Switchable Windows with Tungsten Oxide. Vacuum 2008, 82, 730-735. https://doi.10.1016/j.vacuum.2007.10.020
https://doi.org/10.1016/j.vacuum.2007.10.020

[8] Badour, Y.; Jubera, V.; Andron, I.; Frayret, C.; Gaudon, M. Photochromism in Inorganic Crystallised Compounds. Opt. Mater. 2021, 12, 100110. https://doi.org/10.1016/j.omx.2021.100110
https://doi.org/10.1016/j.omx.2021.100110

[9] Zhang, J.; Zou, Q.; and Tian, H. Photochromic Materials: More Than Meets the Eye. Adv. Mater. 2013, 25, 378-399. https://doi.org/10.1002/adma.201201521
https://doi.org/10.1002/adma.201201521

[10] Zou, Y.; Yi, T.; Xiao, Sh.; Li, F.; Li, Ch.; Gao, X.; Wu, J.; Yu, M.; Huang, Ch. Amphiphilic Diarylethene as a Photoswitchable Probe for Imaging Living Cells. J. Am. Chem. Soc. 2008, 130, 15751-1575. https://doi.org/10.1021/ja8043163
https://doi.org/10.1021/ja8043163

[11] Jaik, Th. G.; Ciubini, B.; Frascella F.; and Jonas, U. Thermal Response and Thermochromism of Methyl Red-Based Copolymer Systems - Coupled Responsiveness in Critical Solution Behaviour and Optical Absorption Properties. Polym. Chem. 2022, 13, 1186-1214. https://doi.org/10.1039/D1PY01361K
https://doi.org/10.1039/D1PY01361K

[12] Somani, P. R.; Radhakrishnan, S. Electrochromic Materials and Devices: Present and Future. Mater. Chem. Phys. 2002, 77, 117-133. https://doi.org/10.1016/S0254-0584(01)00575-2
https://doi.org/10.1016/S0254-0584(01)00575-2

[13] Han, M.; Cho, Ch. H.; Jang, H.; Kim, E. Black-to-Transparent Electrochromic Capacitive Windows Based on Conjugated Polymers. J. Mater. Chem. A 2021, 9, 16016-16027. https://doi.org/10.1039/D1TA02996G
https://doi.org/10.1039/D1TA02996G

[14] Bouas-Laurent, H.; Durr, H. Organic Photochromism. Pure Appl. Chem. 2001, 73, 639-665. http://dx.doi.org/10.1351/pac200173040639
https://doi.org/10.1351/pac200173040639

[15] Wiedemann, U.; Alt, W.; Meschede, D. Switching Photochromic Molecules Adsorbed on Optical Microfibers. Opt. Express 2012, 20, 12710-12720. https://doi.org/10.1364/OE.20.012710
https://doi.org/10.1364/OE.20.012710

[16] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499
https://doi.org/10.23939/chcht16.04.499

[17] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377-386. https://doi.org/10.23939/chcht16.03.377
https://doi.org/10.23939/chcht16.03.377

[18] Mukbaniani, O.; Aneli, J.; Tatrishvili, T.; Markarashvili, E.; Londaridze, L.; Kvinikadze, N.; Kakalashvili, L. Wood Polymer Composite Based on a Styrene and Triethoxy(Vinylphenethyl)silane. Chem. Chem. Technol. 2023, 17, 35-44. https://doi.org/10.23939/chcht17.01.035
https://doi.org/10.23939/chcht17.01.035

[19] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili; G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325-338. https://doi.org/10.23939/chcht17.02.325
https://doi.org/10.23939/chcht17.02.325

[20] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili; G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807-819. https://doi.org/10.23939/chcht17.04.807
https://doi.org/10.23939/chcht17.04.807

[21] Huang, Y.; Zhou, Y.; Doyle, C.; Wu, Sh.-Ts. Tuning the Photonic Band Gap in Cholesteric Liquid Crystals by Temperature Dependent Dopant Solubility. Opt. Express 2006, 14, 1236-1242. https://doi.org/10.1364/OE.14.001236
https://doi.org/10.1364/OE.14.001236

[22] Ritacco, T.; Aceti, D. M.; Domenico, G. De.; Giocondo, M.; Mazzulla, A.; Cipparrone, G.; and Pagliusi, P. Tuning Cholesteric Selective Reflection In Situ Upon Two-Photon Polymerization Enables Structural Multicolor 4D Microfabrication. Adv. Optical Mater. 2022, 10, 1-9. https://doi.org/10.1002/adom.202101526
https://doi.org/10.1002/adom.202101526

[23] Lu, H. B.; Xie, X. Y.; Xing, J.; Xu, C.; Wu, Z. Q.; Zhang, G. B.; Lv, G. Q.; Qiu, L. Z. Wavelength-Tuning and Band-Broadening of a Cholesteric Liquid Crystal Induced by a Cyclic Chiral Azobenzene Compound. Opt. Mater. Express 2016, 6, 3145-3158. https://doi.org/10.1364/OME.6.003145
https://doi.org/10.1364/OME.6.003145

[24] Xiang, J.; Li, Y.; Li, Q.; Paterson, D. A.; Storey, J. M. D.; Imrie, C. T.; Lavrentovich, O. D. Electrically Tunable Selective Reflection of Light from Ultraviolet to Visible and Infrared by Heliconical Cholesterics. Adv. Mater. 2015, 27, 3014-3018. https://doi.org/10.1002/adma.201500340
https://doi.org/10.1002/adma.201500340

[25] Jing, T. Selective Reflection of Cholesteric Liquid Crystals. Science Insights 2022, 40, 515-517. https://doi.org/10.15354/si.22.re051
https://doi.org/10.15354/si.22.re051

[26] Saadaoui, L.; Petriashvili, G.; De Santo, M. P.; Hamdi, R.; Othman, T.; Barberi, R. Electrically Controllable Multicolor Cholesteric Laser. Opt. Express 2015, 23, 22922-22927. https://doi.org/10.1364/OE.23.022922
https://doi.org/10.1364/OE.23.022922

[27] Chilaya, G.; Chanishvili, A.; Petriashvili, G.; Barberi, R.; Bartolino, R.; Cipparrone, G.; Mazzulla, A.; Shibaev, P. V. Reversible Tuning of Lasing in Cholesteric Liquid Crystals Controlled by Light-Emitting Diodes. Adv. Mater. 2007, 19, 565-568. https://doi.org/10.1002/adma.200600353
https://doi.org/10.1002/adma.200600353

[28] Qu, R.; Li, G. Overview of Liquid Crystal Biosensors: From Basic Theory to Advanced Applications. Biosensors 2022, 12, 205. https://doi.org/10.3390/bios12040205
https://doi.org/10.3390/bios12040205

[29] Petriashvili, G.; Japaridze, K.; Devadze, L.; Zurabishvili, C.; Sepashvili, N.; Ponjavidze, N.; De Santo, M. P.; Matranga, M. A.; Hamdi, R.; Ciuchi, F.; et al. Paper Like Cholesteric Interferential Mirror. Opt. Express 2013, 21, 20821-20830. https://doi.org/10.1364/OE.21.020821
https://doi.org/10.1364/OE.21.020821

[30] Chen, Ch.-W.; Brigeman, A. N.; Ho, Ts.-J.; Khoo, I.C h. Normally Transparent Smart Window Based on Electrically Induced Instability in Dielectrically Negative Cholesteric Liquid Crystal. Optical Material Express 2018, 8, 691-697. https://doi.org/10.1364/OME.8.000691
https://doi.org/10.1364/OME.8.000691

[31] Tseng, H.-Yi.; Chang, Li-M.; Lin, K.-W.; Li, Ch.-Ch.; Lin, W.-H.; Wang, Ch.-T.; Lin, Ch.-W.; Liu Sh.-H.; Lin, Ts.-H. Smart Window with Active-Passive Hybrid Control. Materials 2020, 13, 4137. https://doi.org/10.3390/ma13184137
https://doi.org/10.3390/ma13184137

[32] Shen, W.; Li, G. Recent Progress in Liquid Crystal-Based Smart Windows: Materials, Structures, and Design. Laser Photonics Rev. 2023, 17, 2200207. https://doi.10.1002/lpor.202200207
https://doi.org/10.1002/lpor.202200207

[33] Zhang, R.; Zhang, Z.; Han, J.; Yang, L.; Li, J.; Song, Z.; Wang, T.; Zhu, J. Advanced Liquid Crystal-Based Switchable Optical Devices for Light Protection Applications: Principles and Strategies. Light Sci Appl 2023, 12, 11. https://doi.org/10.1038/s41377-022-01032-y
https://doi.org/10.1038/s41377-022-01032-y

[34] An, C-H.; Choi, T-H.; Oh, S-W. Energy-Efficient Liquid Crystal Smart Window with a Clear View. Crystals 2023, 13, 1464. https://doi.org/10.3390/cryst13101464
https://doi.org/10.3390/cryst13101464