Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Прогнозування міцності клейових з’єднань деревини дуба, з’єднаних термопластичними полівінілацетатними клеями

Bogdan Kshyvetskyy1, Diana Kindzera2, Yaroslav Sokolovskyy2, Halyna Somar1, Ihor Sokolovskyi1
Affiliation: 
1 Lviv Ukrainian National Forestry University, 11, Zaliznyaka St., 79057 Lviv, Ukraine. 2 Lviv Polytechnic National University, 12 S.Bandery St., 79013Lviv, Ukraine. kindzera74@ukr.net
DOI: 
https://doi.org/10.23939/chcht17.01.110
AttachmentSize
PDF icon full_text.pdf515.37 KB
Abstract: 
Серед кількох видів термопластичних клеїв, структуровані й неструктуровані полівінілацетатні (ПВА) клеї достатньо широко використовують,, зокрема для формування клейових з’єднань різних порід деревини, серед них дуба. Для забезпечення належних умов використання клейових з’єднань деревини дуба важлива наявність швидких і точних методів прогнозування їхньої міцності і довговічності. Зміни міцності клейових з’єднань деревини дуба, з’єднаних структурованими і неструктурованими ПВА клеями, вивчено за допомогою тривалих експериментальних досліджень. На основі узагальнення експериментальних даних і теоретичних прогнозів механізму утворення клейового шва запропоновано залежності, які дають змогу теоретично розрахувати міцність клейових з’єднань деревини дуба, з’єднаних неструктурованими і структурованими ПВА клеями. Запропоновані рівняння відтворюють експериментальні дані з достатньою точністю ± 3,5 % в діапазоні температур від 251 K до 306 K і вологості від 40 % до 100 %, тому рекомендовані для практичного використання.
References: 

[1] Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood Composites and Their Polymer Binders. Polymers 2020, 12, 1115. https://doi.org/10.3390/polym12051115
[2] Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol–Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046-2048. https://doi.org/10.1016/j.biortech.2009.09.085
[3] Qiao, W.; Li, S.; Xu, F. Preparation and Characterization of a Phenol-Formaldehyde Resin Adhesive Obtained from Bio-Ethanol Production Residue. Polym. Polym. Compos. 2016, 24, 99-105. https://doi.org/10.1177/096739111602400203
[4] Łebkowska, M.; Załęska–Radziwiłł, M.; Tabernacka, A.
Adhesives Based on Formaldehyde–Environmental Problems. Biotechnologia 2017, 98, 53-65. https://doi.org/10.5114/bta.2017.66617
[5] Bekhta, P.; Müller, M.; Hunko, І. Properties of Thermoplastic-Bonded Plywood: Effects of the Wood Species and Types of the Thermoplastic Films. Polymers 2020, 12, 2582. https://doi.org/10.3390/polym12112582
[6] Kaboorani, A.; Riedl, B. Improving Performance of Polyvinyl Acetate (PVA) as a Binder for Wood by Combination with
Melamine Based Adhesives. Int. J. Adhes. Adhes. 2011, 31, 605-611. https://doi.org/10.1016/j.ijadhadh.2011.06.007
[7] Khan, U.; May, P.; Porwal, H.; Nawaz, K.; Coleman, J.N. Improved Adhesive Strength and Toughness of Polyvinyl Acetate Glue on Addition of Small Quantities of Graphene. ACS Appl. Mater. Interfaces 2013, 5, 1423-1428. https://doi.org/10.1021/am302864f
[8] Qiao, L.; Easteal, A.J. Aspects of the Performance of PVAc Adhesives in Wood Joins. Pigment. Resin Technol. 2001, 30, 79-87. https://doi.org/10.1108/03699420110381599
[9] Minelga, D.; Ukvalbergiené, K.; Norvydas, V.; Buika, G.; Dubininkas, M. Impact of Aliphatic Isocyanates to PVA Dispersion Gluing Properties. Medziagotyra 2010, 16, 217-220.
[10] Fang, Q.; Cui, H.-W.; Du, G.-B. Preparation and Characterisa-tion of PVAc–NMA–MMT. J. Thermoplast. Compos. Mater. 2013, 26, 1393-1406. https://doi.org/10.1177/0892705712461644
[11] Manchenko, O.; Nizhnik, V. Role of the Structure and Composition of Macromolecule Chain in Chemical Plasticization of
Polymers. Chem. Chem. Technol. 2014, 8, 323-327. https://doi.org/10.23939/chcht08.03.323
[12] Tigabe, S.; Atalie, D.; Gideon, R.K. Physical Properties
Characterization of Polyvinyl Acetate Composite Reinforced with Jute Fibers Filled with Rice Husk and Sawdust. J. Nat. Fibers 2022, 19, 5928-5939. https://doi.org/10.1080/15440478.2021.1902899
[13] Custodio, J.; Broughton, J.; Cruz, H. A Review of Factors Influencing the Durability of Structural Bonded Timber Joints. Int. J. Adhes. Adhes. 2009, 29, 173-185. https://doi.org/10.1016/j.ijadhadh.2008.03.002
[14] Follrich, J.; Teischinger, A.; Gindl, W.; Müller, U.
Tensile Strength of Softwood Butt end Joints. Effect of Grain Angle on Adhesive Bond Strength. Wood Mater. Sci. Eng. 2007, 2, 83-89. https://doi.org/10.1080/17480270701841043
[15] Li, R.; Guo, X.; Ekevad, M.; Marklund, B.; Cao, P.
Investigation of Glueline Shear Strength of Pine Wood Bonded with PVAc by Response Surface Methodology. BioResources 2015, 10, 3831-3838. https://doi.org/10.15376/biores.10.3.3831-3838

[16] Hosovskyi, R., Kindzera, D., Atamanyuk, V. Diffusive Mass Transfer during Drying of Grinded Sunflower Stalks. Chem. Chem. Technol. 2016, 10, 459-463. https://doi.org/10.23939/chcht10.04.459
[17] Kshyvetskyy, B. Prohnozuvannya Dovhovichnosti Termoplas-tychnykh Kleyovykh Z'yednanʹ Derevyny za Dopomohoyu Ma-tematychnoyi Modeli. Problemy trybolohiyi 2012, 66, 38-42. http://tribology.khnu.km.ua/index.php/ProbTrib/article/view/266