Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Проблема технологічного старіння дорожніх нафтових бітумів та шляхи її вирішення: огляд

Myroslava Donchenko1, Oleg Grynyshyn1, Yuriy Prysiazhnyi1, Serhiy Pyshyev1, Ananiy Kohut1
Affiliation: 
1 Lviv Polytechnic National University, 12 S. Bandery St., 79013 Lviv, Ukraine myroslava.i.donchenko@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.284
AttachmentSize
PDF icon full_text.pdf309.87 KB
Abstract: 
Розглянуто основні закономірності процесу технологічного старіння нафтових бітумів, зокрема механізми та перетворення, що при цьому відбуваються. Наведено перелік основних лабораторних методів моделювання вказаних процесів, а також вказано, як змінювалась технічна суть методик від перших розробок і до сьогодні. Вказано ряд сполук, які можуть бути використані як інгібітори технологічного старіння, зокрема антиоксиданти та пластифікатори, а також ряд «натуральних» речовин, що здатні виявляти такі властивості.
References: 

[1] Enkorr Home Page. https://enkorr.ua/uk/news/Mirovomu_sprosu_na_neft_ugrozhayut_elektrokari...—_MEA/234610 (accessed 2023-12-30).
[2] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
[3] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
[4] Donchenko, M.; Grynyshyn, O.; Demchuk Yu.; Topilnytskyy P.; Turba Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
[5] Tauste, R.; Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. Understanding the Bitumen Ageing Phenomenon: A Review. Constr. Build. Mater. 2018, 192, 593–609. https://doi.org/10.1016/j.conbuildmat.2018.10.169
[6] Bell, C.A. Summary Report on Aging on Asphalt-Aggregate Systems; Oregon State University, Corvallis, 1989.
[7] Lu, X.; Talon, Y.; Redelius, P. Aging of Bituminous Binders – Laboratory Tests and Field Data. In Proceedings of the 4th Euroasphalt and Eurobitumen Congress; European Asphalt Pavement Association: Copenhagen, 2008.
[8] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–622. https://doi.org/10.23939/chcht17.04.916
[10] Bratychak, M.; Gunka, V. Khimiya nafty ta hazu; Publishing House of Lviv Polytechnic National University: Lviv, 2020.
[11] Petersen, J.C. A Thin Film Accelerated Aging Test for Evaluating Asphalt Oxidative Aging. J. Transp. Res. Board 1989, 58, 220–237.
[12] Zupanick, M.; Baselice, V. Characterizing Asphalt Volatility. J. Transp. Res. Board 1997, 1586, 971223. https://doi.org/10.3141/1586-01
[13] Miró, R.; Martínez, A.; Moreno-Navarro, F.; Rubio-Gámez, M. Effect of Ageing and Temperature on the Fatigue Behaviour of Bitumens. Mater. Des. 2015, 86, 129–137. http://dx.doi.org/10.1016/j.matdes.2015.07.076
[14] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015.
[15] Petersen, J. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships explores the current physicochemical understanding of the chemistry, kinetics, and mechanisms of asphalt oxidation and its influence on asphalt durability. In Transportation Research Circular E-C140, 2009.
[16] Santagata, E.; Baglieri, O.; Dalmazzo, D.; Tsantilis, L. Experimental Investigation on the Combined Effects of Physical Hardening and Chemical Ageing on Low Temperature Properties of Bituminous Binders. In 8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. RILEM Bookseries, vol 11; Canestrari, F.; Partl, M., Eds.; Springer: Dordrecht, 2016; pp 631–641. https://doi.org/10.1007/978-94-017-7342-3_51
[17] Mertens, P. ASTM. Comm. D – 8 Chicago III Meeting, 1960.
[18] Wang, D.; Cannone Falchetto, A.; Poulikakos, L.; Hofko, B.; Porot, L. (2019). RILEM TC 252-CMB report: Rheological modeling of asphalt binder under different short and long-term aging temperatures. Materials and Structures, 2019, 52, 1–12. https://doi.org/10.1617/s11527-019-1371-8
[19] Airey, G. D. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165–176. http://dx.doi.org/10.1080/1029843042000198568
[20] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
[21] Thomas, K.; Harnsberger, P.; Guffey, F. An Evaluation of Asphalt Ridge (UTHA) Tar Sand Bitumen as a Feedstock for the Production of Asphalt and Turbine Fuels. Fuel sci. technol. int. 1994, 12, 281–302. https://doi.org/10.1080/08843759408916179
[22] Juristyarini, P.; Davison, R.; Glover, C. Development of an Asphalt Aging Procedure to Assess Long-Term Binder Performance. Pet Sci Technol 2011, 29, 2258–2268. https://doi.org/10.1080/10916461003699192
[23] Pakter, M.; Bratchun, V.; Stukalov, O.; Bespalov, V.; Dolya, A. Zakonomirnosti tekhnologichnogo starinnya naftovykh dorozhnikh bitumiv ta asfaltobetonnykh sumishey. Suchasne promyslove ta cyvilne budivnyctvo 2014, 10, 225–235.
[24] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and use adhesive promoters to bitumen from the phenolic fraction of coal tar. Int J Adhes Adhes 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
[25] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
[26] Cong, P.; Wang, J.; Li, K.; Chen, S. Physical and Rheological Properties of Asphalt Binders Containing Various Antiaging Agents. Fuel 2012, 97, 678–684. https://doi.org/10.1016/j.fuel.2012.02.028
[27] Camargo, I. G. D. N.; Dhia, T. B.; Loulizi, A.; Hofko, B.; Mirwald, J. (2021). Anti-aging additives: Proposed evaluation process based on literature review. Road Mater. Pavement Des. 2021, 22, S134-S153. https://doi.org/10.1080/14680629.2021.1906738
[28] Budziński, B.; Ratajczak, M.; Majer, S.; Wilmański, A. Influence of bitumen grade and air voids on low-temperature cracking of asphalt. Case Stud. Constr. Mater. 2023, 19, e02255. https://doi.org/10.1016/j.cscm.2023.e02255
[29] Ghavibazoo, A.; Abdelrahman, M.; Ragab, M. Evaluation of Oxidization of Crumb Rubber–Modified Asphalt during Short-Term Aging. J. Transp. Res. Board 2015, 2505, 84–91. https://doi.org/10.3141/2505-11
[30] Cortés, C.; Pérez-Lepe, A.; Fermoso, J.; Costa, A.; Guisado, F.; Esquena, J.; Potti, J. Envejecimiento foto-oxidativo de betunes asfálticos. Comunicación 21. In V Jornada Nacional ASEFMA; ASEFMA, 2010; pp 227–238.
[31] Zeng, G.; Shen, A.; Lyu, Z.; Kang, C.; Cui, H.; Ren, G.; Yue, G. (2023). Research on anti-aging properties of POE/SBS compound-modified asphalt in high-altitude regions. Constr. Build. Mater. 2023, 376, 131060. https://doi.org/10.1016/j.conbuildmat.2023.131060
[32] Yakovlieva, A.; Boichenko, S.; Shkilniuk, I.; Bakhtyn, A.; Kale, U.; Nagy, A. Assessment of influence of anti-icing fluids based on ethylene and propylene glycol on environment and airport infrastructure. Int. J. Sustain. Aviat. 2022, 8, 54–74. https://doi.org/10.1504/IJSA.2022.120613
[33] Dessouky, S.; Contreras, D.; Sánchez, J.; Park, D. Anti-Oxidants’ Effect on Bitumen Rheology and Mixes’ Mechanical Performance. In Innovative Materials and Design for Sustainable Transportation Infrastructure; Zhao, S.; Liu, J., Zhang, X., Eds.; Fairbanks, Alaska, 2015; pp 8–18. https://doi.org/10.1061/9780784479278.002
[34] Martin, K. Laboratory Evaluation of Antioxidants for Bitumen. Proc. Aust. Road Res. Board 1968, 4, 431.
[35] Dessouky, S.; Ilias, M.; Park, D.; Kim, I. Influence of Antioxidant-Enhanced Polymers in Bitumen Rheology and Bituminous Concrete Mixtures Mechanical Performance. Adv. Mater. Sci. Eng. 2015, 2015, 214585. https://doi.org/10.1155/2015/214585
[36] Duan, H.; Kuang, H.; Zhang, H.; Liu, J.; Luo, H.; Cao, J. Investigation on Microstructure and Aging Resistance of Bitumen Modified by Zinc Oxide/Expanded Vermiculite Composite Synthesized with Different Methods. Fuel 2022, 324, 124590. https://doi.org/10.1016/j.fuel.2022.124590
[37] Zhuang, C.; Chen, Y. The effect of nano-SiO2 on concrete properties: a review. Nanotechnol. Rev. 2019, 8, 562–572. https://doi.org/10.1515/ntrev-2019-0050
[38] Jin, J.; Tan, Y.; Liu, R.; Zheng, J.; Zhang, J. (2019). Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite-modified asphalt. J. Mater. Civ. Eng. 2019, 31, 04018388. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002601
[39] Saleh, T.A. Nanomaterials: Classification, Properties, and Environmental Toxicities. Environ. Technol. Innov. 2020, 20, 101067. https://doi.org/10.1016/j.eti.2020.101067
[40] Zhang, H.; Luo, H.; Duan, H.; Cao, J. Influence of Zinc Oxide/Expanded Vermiculite Composite on the Rheological and Anti-Aging Properties of Bitumen. Fuel 2022, 315, 123165. https://doi.org/10.1016/j.fuel.2022.123165
[41] Ghanoon, S. A.; Tanzadeh, J.; Mirsepahi, M. Laboratory evaluation of the composition of nano-clay, nano-lime and SBS modifiers on rutting resistance of asphalt binder. Constr. Build. Mater. 2020, 238, 117592. https://doi.org/10.1016/j.conbuildmat.2019.117592
[42] Fini, E.H.; Hajikarimi, P.; Rahi, M.; Nejad, F.M. Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. J. Mater. Civ. Eng. 2016, 28, 1–9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423
[43] Bonica, C.; Toraldo, E.; Andena, L.; Marano, C.; Mariani, E. The Effects of Fibers on the Performance of Bituminous Mastics for Road Pavements. Compos. Part B Eng. 2016, 95, 76–81. https://doi.org/10.1016/j.compositesb.2016.03.069
[44] Farias, L. G. A.; Leitinho, J. L.; Amoni, B. D. C.; Bastos, J. B.; Soares, J. B.; Soares, S. D. A.; de Sant'Ana, H. B. Effects of nanoclay and nanocomposites on bitumen rheological properties. Constr. Build. Mater. 2016, 125, 873–883. https://doi.org/10.1016/j.conbuildmat.2016.08.127
[45] Kordi, Z.; Shafabakhsh, G. Evaluating Mechanical Properties of Stone Mastic Asphalt Modified with Nano Fe2O3. Constr. Build. Mater. 2017, 134, 530–539. https://doi.org/10.1016/j.conbuildmat.2016.12.202
[46] Shafabakhsh, G.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the Effect of Nano-TiO2 on the Rutting and Fatigue Behavior of Asphalt Mixtures. Constr. Build. Mater. 2014, 54, 566–571. https://doi.org/10.1016/j.conbuildmat.2013.12.064
[47] Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials–A review. Constr. Build. Mater. 2017, 143, 633–648. https://doi.org/10.1016/j.conbuildmat.2017.03.158
[48] Yarahmadi, A.M.; Shafabakhsh, G.; Asakereh, A. Laboratory Investigation of the Effect of Nano-CaCO3 on Rutting and Fatigue of Stone Mastic Asphalt Mixtures. Constr. Build. Mater. 2022, 317, 126127. https://doi.org/10.1016/j.conbuildmat.2021.126127
[49] Xiao, N.; Zhang, Y.; Xia, H.; Lei, Y.; Luo, Y. Effects of Organic Nano Calcium Carbonate on Aging Resistance of Bio-Asphalt. Adv. Mater. Sci. Eng. 2022, 2022, 6043030. https://doi.org/10.1155/2022/6043030
[50] Caputo, P.; Porto, M.; Angelico, R.; Loise, V.; Calandra, P.; Oliviero Rossi, C. Bitumen and Asphalt Concrete Modified by Nanometer-Sized Particles: Basic Concepts, the State of the Art and Future Perspectives of the Nanoscale Approach. Adv. Colloid Interface Sci. 2020, 285, 102283. https://doi.org/10.1016/j.cis.2020.102283
[51] Mousavi, M.; Fini, E. Silanization Mechanism of Silica Nanoparticles in Bitumen Using 3-Aminopropyl Triethoxysilane (APTES) and 3-Glycidyloxypropyl Trimethoxysilane (GPTMS). ACS Sustain. Chem. Eng. 2020, 8, 3231–3240. https://doi.org/10.1021/acssuschemeng.9b06741
[52] Li, Z.; Guo, T.; Chen, Y.; Liu, Q.; Chen, Y. The Properties of Nano-CaCO3/Nano-ZnO/SBR Composite-Modified Asphalt. Nanotechnol. Rev. 2021, 10, 1253–1265. https://doi.org/10.1515/ntrev-2021-0082
[53] Kim, J.H.; Kang, M.; Kim, Y.J.; Won, J.; Park, N.; Kang, Y.S. Dye-Sensitized Nanocrystalline Solar Cells Based on Composite Polymer Electrolytes Containing Fumed Silica Nanoparticles. Chem. Commun. 2004, 14, 1662–1663, https://doi.org/10.1039/B405215C
[54] Kim, K.; Kim, H.; Kim, H.J. Enhancing Thermo-Mechanical Properties of Epoxy Composites Using Fumed Silica with Different Surface Treatment. Polymers 2021, 13, 2691. https://doi.org/10.3390/polym13162691
[55] Zheng, Z.; Song, Y.; Wang, X.; Zheng, Q. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses. J. Rheol. 2015, 59, 971–993. https://doi.org/10.1122/1.4922010
[56] Zhou, S.; Li, S.; Yan, C. Influence of Fumed Silica Nanoparticles on the Rheological and Anti-Aging Properties of Bitumen. Constr. Build. Mater. 2023, 397, 132388. https://doi.org/10.1016/j.conbuildmat.2023.132388
[57] Su, Y.; Tang, S.; Cai, M.; Nie, Y.; Hu, B.; Wu, S.; Cheng, C. Thermal Oxidative Aging Mechanism of Lignin Modified Bitumen. Constr. Build. Mater. 2023, 363, 129863. https://doi.org/10.1016/j.conbuildmat.2022.129863
[58] Xu, G.; Wang, H.; Zhu, H. Rheological Properties and Anti-Aging Performance of Bitumen Binder Modified with Wood Lignin. Constr. Build. Mater. 2017, 151, 801–808. https://doi.org/10.1016/j.conbuildmat.2017.06.151
[59] Xie, S.; Li, Q.; Karki, P.; Zhou, F.; Yuan, J.S. Lignin as Renewable and Superior Bitumen Binder Modifier. ACS Sustain. Chem. Eng. 2017, 5, 2817–2823. https://doi.org/10.1021/acssuschemeng.6b03064
[60] Zhao, C.; Xie, S.; Pu, Y.; Zhang, R.; Huang, F.; Ragauskas, A.J.; Yuan, J.S. Synergistic Enzymatic and Microbial Lignin Conversion. Green Chem. 2016, 18, 1306–1312. https://doi.org/10.1039/C5GC01955A
[61] Malinowski, S.; Woszuk, A.; Franus, W. Modern Two-Component Modifiers Inhibiting the Aging Process of Road Bitumen. Constr. Build. Mater. 2023, 409, 133838. https://doi.org/10.1016/j.conbuildmat.2023.133838
[62] Lizardi-Mendoza, J.; Argüelles Monal, W.M.; Goycoolea Valencia, F.M. Chemical Characteristics and Functional Properties of Chitosan. In Chitosan in the Preservation of Agricultural Commodities; Elsevier Inc., 2016; pp 3–31. https://doi.org/10.1016/B978-0-12-802735-6.00001-X
[63] Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A.; Younus, M. Chitosan: A potential Biopolymer for Wound Management. Int. J. Biol. Macromol. 2017, 102, 380–383. https://doi.org/10.1016/j.ijbiomac.2017.04.047
[64] Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an Environment Friendly Biomaterial – A Review on Recent Modifications and Applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.113
[65] Hamed, I.; Ozogul, F.; Regenstein, J.M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. https://doi.org/10.1016/j.tifs.2015.11.007
[66] Philibert, T.; Lee, B.H.; Fabien, N. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Appl. Biochem. Biotechnol. 2017, 181, 1314–1337. https://doi.org/10.1007/s12010-016-2286-2
[67] Leceta, I.; Etxabide, A.; Cabezudo, S.; De La Caba, K.; Guerrero, P. Bio-Based Films Prepared with by-Products and Wastes: Environmental Assessment. J. Clean. Prod. 2014, 64, 218–227. https://doi.org/10.1016/j.jclepro.2013.07.054
[68] Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A Review on the Synthesis of Graft Copolymers of Chitosan and their Potential Applications. Int. J. Biol. Macromol. 2020, 163, 2097–2112. https://doi.org/10.1016/j.ijbiomac.2020.09.060
[69] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Lect. Notes Civ. Eng. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
[70] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
[71] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
[72] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[73] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
[74] Hadi Nahi, M.; Kamaruddin, I.; Napiah, M. The Utilization of Rice Husks powder as an Antioxidant in Asphalt Binder. Appl. Mech. Mater. 2014, 567, 539–544. https://doi.org/10.4028/www.scientific.net/AMM.567.539
[75] Tan, X.; He, Y.; Zhang, M.; Zhang, J. Research on low temperature properties and physical hardening effect of asphalt components. Case Stud. Constr. Mater. 2023, 19, e02484. https://doi.org/10.1016/j.cscm.2023.e02484
[76] Rossi, C.; Caputo, P.; Ashimova, S.; Fabozzi, A.; D’Errico, G.; Angelico, R. Effects of Natural Antioxidant Agents on the Bitumen Aging Process: An EPR and Rheological Investigation. Appl. Sci. 2018, 8, 1405. https://doi.org/10.3390/app8081405
[77] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211 [78] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
[79] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of humic acids from low-grade metamorphism coal for the modification of biofilms based on polyvinyl alcohol. Pet. Coal 2021, 63, 953–962.
[80] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[81] Prysiazhnyi, Y.; Grynyshyn, O.; Pyshyev, S.; Korchak, B.; Bratychak, M. Resins with Oxygen-Containing Functional Groups Obtained from Products of Fossil Fuels Processing: A Review of Achievements. Chem. Chem. Technol. 2023, 17, 574–591. https://doi.org/10.23939/chcht17.03.574
[82] Pyshyev, S.; Zbykovskyy, Y.; Shvets, I.; Demchuk, Y.; Vytrykush, N. Modeling of Coke Distribution in a Dry Quenching Zone.
ACS Omega 2023, 8, 19464–19473. https://doi.org/10.1021/acsomega.3c00747
[83] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
[84] Zhang, C.; Dong, H.; Wang, T.; Li, Y.; Xu, S.; Zheng, Y.; Que, Y.; Chen, Y. Effect of Different Organic Layered Double Hydroxides on the Anti-Aging Property of Bitumen. Constr. Build. Mater. 2023, 367, 130316. https://doi.org/10.1016/j.conbuildmat.2023.130316
[85] Celauro, C.; Teresi, R.; Dintcheva, N.T. Evaluation of Anti-Aging Effect in Biochar-Modified Bitumen. Sustainability 2023, 15, 10583. https://doi.org/10.3390/su151310583
[86] Pyrig, Ya.; Galkin, A.; Oksak, S. Porivnyannya vlastyvostei bitumnyh vyazhuchyh pislya starinnya riznymy metodamy. Budivnytstvo ta tsyvilʹna inzheneriya 2022, 26, 92–107. https://doi.org/10.36100/dorogimosti2022.26.092
[87] EN 12607-2:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air. Part 2. TFOT method, 2018.
[88] Hveem, F.N.; Zube, E.; Skog, J. Proposed new tests and specifications for paving grade asphalts. Association of Asphalt Paving Technologists Proceedings 1963, 32, 247–327.
[89] EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air Part 1. RTFOT method, 2014.
[90] Hamad, R. Tekhnycheskye trebovanyya i metody ispytanyya bytumnykh vyazhushchykh po prohramme SHRP. Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu 2017, 79, 66–72.
[91] Bahia, H.; Hislop, W.; Zhai, H.; Rangel, A. Classification of Asphalt Binders into Simple and Complex Binders. Association of Asphalt Paving Technologists Proceedings 1998, 67, 1–41.
[92] Y Hu, Y.; Si, W.; Kang, X.; Xue, Y.; Wang, H.; Parry, T.; Airey, G. D. State of the Art: Multiscale Evaluation of Bitumen Ageing Behaviour. Fuel 2022, 326, 125045. https://doi.org/10.1016/j.fuel.2022.125045