Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Пористі гідрогелеві плівки на основі натрій альгінату як носії для систем імпульсної доставки ліків

Alina Sikach1, Halyna Bubela1, Viktoriia Konovalova1, Iryna Kolesnyk1
Affiliation: 
1 Department of Chemistry, National University of Kyiv-Mohyla Academy, 2 Skovoroda St., Kyiv 04070, Ukraine a.sikatch@ukma.edu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Це дослідження зосереджено на створенні методу виробництва іонно-зшитих гідрогелевих систем на основі альгінату, які забезпечують негайне вивільнення ліків. Дослідження вивчає кінетику вивільнення бактерицидного препарату для полегшення процесу загоєння. Методика передбачає покращення методу іммобілізації амфіфільних лікарських засобів на мікрочастинках кальциту з наступним їхнім концентруванням у порах, утворених унаслідок розкладання мікрочастинок.
References: 

[1] Xue, H.; Ju, Y.; Ye, X.; Dai, M.; Tang, C.; Liu, L. Construction of Intelligent Drug Delivery System Based on Polysaccharide-Derived Polymer Micelles: A Review. Int. J. Biol. Macromol. 2024, 254, 128048. https://doi.org/10.1016/j.ijbiomac.2023.128048
[2] Galasso, C.; Ruocco, N.; Mutalipassi, M.; Barra, L.; Costa, V.; Giommi, C.; Dinoi, A.; Genovese, M.; Pica, D.; Romano, C.; Greco, S.; Pennesi, C. Marine Polysaccharides, Proteins, Lipids, and Silica for Drug Delivery Systems: A Review. Int. J. Biol. Macromol. 2023, 253, 127145. https://doi.org/10.1016/j.ijbiomac.2023.127145
[3] Putro, J. N.; Soetaredjo, F. E.; Lunardi, V. B.; Irawaty, W.; Yuliana, M.; Santoso, S. P.; Puspitasari, N.; Wenten, I. G.; Ismadji, S. Polysaccharides Gums in Drug Delivery Systems: A Review. Int. J. Biol. Macromol. 2023, 253, 127020. https://doi.org/10.1016/j.ijbiomac.2023.127020
[4] Gomzyak, V. I.; Sedush, N. G.; Puchkov, A. A.; Polyakov, D. K.; Chvalun, S. N. Linear and Branched Lactide Polymers for Targeted Drug Delivery Systems. Polym. Sci. Ser. B 2021, 63, 257–271. https://doi.org/10.1134/S1560090421030064
[5] Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biom. Techn. 2024, 5, 109–122. https://doi.org/10.1016/j.bmt.2023.09.001
[6] Wen, H.; Jung, H.; Li, X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015, 17, 1327–1340. https://doi.org/10.1208/s12248-015-9814-9
[7] Raina, N.; Pahwa, R.; Bhattacharya, J.; Paul, A. K.; Nissapatorn, V.; Pereira, M. de L.; Oliveira, S. M. R.; Dolma, K. G.; Rahmatullah, M.; Wilairatana, P. et al. Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022, 14, 1–31. https://doi.org/10.3390/pharmaceutics14030574
[8] Hussain, M.; Hafeez, A.; Kushwaha, S. P. Nanoformulation Mediated Transdermal Delivery of Anti-Diabetic Drugs: An Updated Review. Intell. Pharm. 2023, 1, 192–200. https://doi.org/10.1016/j.ipha.2023.08.009
[9] Xu, Y.; Zhao, M.; Cao, J.; Fang, T.; Zhang, J.; Zhen, Y.; Wu, F.; Yu, X.; Liu, Y.; Li, J.; et al. Applications and Recent Advances in Transdermal Drug Delivery Systems for the Treatment of Rheumatoid Arthritis. Acta Pharm. Sin. B 2023, 13, 4417–4441. https://doi.org/10.1016/j.apsb.2023.05.025
[10] Parihar, A.; Prajapati, B. G.; Paliwal, H.; Shukla, M.; Khunt, D.; Devrao Bahadure, S.; Dyawanapelly, S.; Junnuthula, V. Advanced Pulmonary Drug Delivery Formulations for the Treatment of Cystic Fibrosis. Drug Discov. Today 2023, 28, 103729. https://doi.org/10.1016/j.drudis.2023.103729
[11] Xiong, S.; Ye, S.; Ni, P.; Zhong, M.; Shan, J.; Yuan, T.; Liang, J.; Fan, Y.; Zhang, X. Polyvinyl-Alcohol, Chitosan and Graphene-Oxide Composed Conductive Hydrogel for Electrically Controlled Fluorescein Sodium Transdermal Release. Carbohydr. Polym. 2023, 319, 121172. https://doi.org/10.1016/j.carbpol.2023.121172
[12] Vasowala, T.; Gharat, S.; Mhase, M.; Momin, M. Advances in Hydrogels Based Cutaneous Drug Delivery System for Management of Psoriasis. Eur. Polym. J. 2024, 202, 112630. https://doi.org/10.1016/j.eurpolymj.2023.112630
[13] Schoenmakers, D. C.; Rowan, A. E.; Kouwer, P. H. J. Crosslinking of Fibrous Hydrogels. Nat. Commun. 2018, 9, 1–8. https://doi.org/10.1038/s41467-018-04508-x
[14] Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. https://doi.org/10.1002/adma.200501612
[15] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
[16] Alven, S.; Aderibigbe, B. A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 1–30. https://doi.org/10.3390/ijms21249656
[17] Dreiss, C. A. Hydrogel Design Strategies for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. https://doi.org/10.1016/j.cocis.2020.02.001
[18] Chang, S. H.; Custer, P. L.; Mohadjer, Y.; Scott, E. Use of Lorenz Titanium Implants in Orbital Fracture Repair. Ophthal. Plast. Reconstr. Surg. 2009, 25, 119–122. https://doi.org/10.1097/IOP.0b013e31819ac7c5
[19] Wang, L.; Neumann, M.; Fu, T.; Li, W.; Cheng, X.; Su, B. L. Porous and Responsive Hydrogels for Cell Therapy. Curr. Opin. Colloid Interface Sci. 2018, 38, 135–157. https://doi.org/10.1016/j.cocis.2018.10.010
[20] El-Sherbiny, I. M.; Yacoub, M. H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 38. https://doi.org/10.5339/gcsp.2013.38
[21] Tiwari, R.; Pathak, K. Local Drug Delivery Strategies towards Wound Healing. Pharmaceutics 2023, 15, 1–39. https://doi.org/10.3390/pharmaceutics15020634
[22] Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial Anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing. Biomaterials 2017, 122, 34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011
[23] Harrison, I. P.; Spada, F. Hydrogels for Atopic Dermatitis and Wound Management: A Superior Drug Delivery Vehicle. Pharmaceutics 2018, 10, 71. https://doi.org/10.3390/pharmaceutics10020071
[24] Affes, S.; Aranaz, I.; Acosta, N.; Heras, Á.; Nasri, M.; Maalej, H. Chitosan Derivatives-Based Films as pH-Sensitive Drug Delivery Systems with Enhanced Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2021, 182, 730–742. https://doi.org/10.1016/j.ijbiomac.2021.04.014
[25] Sarwar, M. S.; Ghaffar, A.; Huang, Q.; Zafar, M. S.; Usman, M.; Latif, M. Controlled-Release Behavior of Ciprofloxacin from a Biocompatible Polymeric System Based on Sodium Alginate/Poly(Ethylene Glycol) Mono Methyl Ether. Int. J. Biol. Macromol. 2020, 165, 1047–1054. https://doi.org/10.1016/j.ijbiomac.2020.09.196
[26] Aliakbar Ahovan, Z.; Esmaeili, Z.; Eftekhari, B. S.; Khosravimelal, S.; Alehosseini, M.; Orive, G.; Dolatshahi-Pirouz, A.; Pal Singh Chauhan, N.; Janmey, P. A.; Hashemi, A. et al. Antibacterial Smart Hydrogels: New Hope for Infectious Wound Management. Mater. Today Bio 2022, 17, 100499. https://doi.org/10.1016/j.mtbio.2022.100499
[27] Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. U. Insight into Hydrogels. Des. Monomers Polym. 2016, 19, 456–478. https://doi.org/10.1080/15685551.2016.1169380
[28] Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. https://doi.org/10.3390/gels3010006
[29] Catoira, M. C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of Natural Hydrogels for Regenerative Medicine Applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. https://doi.org/10.1007/s10856-019-6318-7
[30] Tavakoli, S.; Klar, A. S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1–20. https://doi.org/10.3390/biom10081169
[31] Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020, 12, 1–60. https://doi.org/10.3390/polym12112702
[32] Banerjee, R.; Kumar, K. J.; Kennedy, J. F. Structure and Drug Delivery Relationship of Acidic Polysaccharides: A Review. Int. J. Biol. Macromol. 2023, 243, 125092. https://doi.org/10.1016/j.ijbiomac.2023.125092
[33] Hurtado, A.; Aljabali, A. A. A.; Mishra, V.; Tambuwala, M. M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. https://doi.org/10.3390/ijms23094486
[34] Maiti, S.; Maji, B.; Yadav, H. Progress on Green Crosslinking of Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering Applications. Carbohydr. Polym. 2023, 326, 121584. https://doi.org/10.1016/j.carbpol.2023.121584
[35] Xie, Y.; Kollampally, S. C. R.; Jorgensen, M.; Zhang, X. Alginate Microfibers as Therapeutic Delivery Scaffolds and Tissue Mimics. Exp. Biol. Med. 2022, 247, 2103–2118. https://doi.org/10.1177/15353702221112905
[36] Cao, Y., Cong, H., Yu, B., Shen, Y. A Review on the Synthesis and Development of Alginate Hydrogels for Wound Therapy. J. Mater. Chem. B 2023, 11, 2801–2829. https://doi.org/10.1039/d2tb02808e
[37] Wang, C.; Liu, H.; Gao, Q.; Liu, X.; Tong, Z. Alginate-Calcium Carbonate Porous Microparticle Hybrid Hydrogels with Versatile Drug Loading Capabilities and Variable Mechanical Strengths. Carbohydr. Polym. 2008, 71, 476–480. https://doi.org/10.1016/j.carbpol.2007.06.018
[38] Robertsa, J.R.; Rittera, D. W.; McShane, M.J. A Design Full of Holes: Functional Nanofilm-Coated Microdomains in Alginate Hydrogels. J Mater Chem B Mater Biol Med. 2013, 107, 3195–3201. https://doi.org/10.1039/C3TB20477D
[39] Zhou, Z.; Zhou, S.; Zhang, X.; Zeng, S.; Xu, Y.; Nie, W.; Zhou, Y.; Xu, T.; Chen, P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug. Chem. 2023, 34, 302–325. https://doi.org/10.1021/acs.bioconjchem.2c00598
[40] Obłąk, E.; Piecuch, A.; Rewak-Soroczyńska, J.; Paluch, E. Activity of Gemini Quaternary Ammonium Salts against Microorganisms. Appl. Microbiol. Biotechnol. 2019, 103, 625–632. https://doi.org/10.1007/s00253-018-9523-2
[41] Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? Chem.Med.Chem 2012, 7, 22–31. https://doi.org/10.1002/cmdc.201100404
[42] Hoque, J.; Akkapeddi, P.; Yarlagadda, V.; Uppu, D. S. S. M.; Kumar, P.; Haldar, J. Cleavable Cationic Antibacterial Amphiphiles: Synthesis, Mechanism of Action, and Cytotoxicities. Langmuir 2012, 28, 12225–12234. https://doi.org/10.1021/la302303d
[43] Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. https://doi.org/10.3390/ijms16023626
[44] Ivantsyk, L. B.; Drogovoz, S. M.; Gerbina, N. A.; Каlко, К. А.; Shtroblia, V. V. Advantages of the Composition and Actyvity of a New Combined Ointment with Ethony for Treatment of the Wound Process. Likarska Sprava 2019, 2019, 126–133. https://doi.org/10.31640/jvd.1-2.2019(19)
[45] Obłak, E.; Piecuch, A.; Krasowska, A.; Łuczyński, J. Antifungal Activity of Gemini Quaternary Ammonium Salts. Microbiol. Res. 2013, 168, 630–638. https://doi.org/10.1016/j.micres.2013.06.001
[46] Guo, R.; Du, X.; Zhang, R.; Deng, L.; Dong, A.; Zhang, J. Bioadhesive Film Formed from a Novel Organic-Inorganic Hybrid Gel for Transdermal Drug Delivery System. Eur. J. Pharm. Biopharm. 2011, 79, 574–583. https://doi.org/10.1016/j.ejpb.2011.06.006
[47] Prausnitz, M. R.; Langer, R. Transdermal Drug Delivery. Nat. Biotechnol. 2008, 26, 1261–1268. https://doi.org/10.1038/nbt.1504
[48] Li, N.; Qin, Y.; Dai, D.; Wang, P.; Shi, M.; Gao, J.; Yang, J.; Xiao, W.; Song, P.; Xu, R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front. Bioeng. Biotechnol. 2022, 9, 804415. https://doi.org/10.3389/fbioe.2021.804415
[49] Goncharuk, O.; Gunko, V. M.; Ugnivenko, A.; Terpilowski, K.; Skwarek, E.; Janusz, W. Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions. Nano Res. Appl. 2017, 03, 1–7. https://doi.org/10.21767/2471-9838.100029
[50] Sikach, A. V.; Konovalova, V. V.; Kolesnyk, I. S. Hydrogel Films Based on Sodium Alginate Modified With Octane-1-Amine: Enhanced Pore Formation and Potential Applications in Drug Delivery Systems. Khimia, Fizyka ta Tehnologia Poverhni 2024, 15, 43–56. https://doi.org/10.15407/hftp15.01.043
[51] Kumar, P.; Honnegowda, T. Effect of Limited Access Dressing on Surface pH of Chronic Wounds. Plast. Aesthetic Res. 2015, 2, 257. https://doi.org/10.4103/2347-9264.165449
[52] Ainurofiq, A.; Choiri, S. Model and Release Pattern of Water Soluble Drug from Natural-Polymer Based Sustained Release Tablet Dosage Form. Int. J. Pharm. Pharm. Sci. 2014, 6, 179–182.
[53] Li, L.; Yang, Y.; Lv, Y.; Yin, P.; Lei, T. Porous Calcite CaCO3 Microspheres: Preparation, Characterization and Release Behavior as Doxorubicin Carrier. Colloid Surfaces B. 2020, 186, 110720. https://doi.org/10.1016/j.colsurfb.2019.110720
[54] Kumar, A. S.; Prema, D.; Rao, R. G.; Prakash, J.; Balashanmugam, P.; Devasena, T.; Venkatasubbu, G. D. Fabrication of Poly (Lactic-Co-Glycolic Acid)/Gelatin Electro Spun Nanofiber Patch Containing CaCO3/SiO2 Nanocomposite and Quercetin for Accelerated Diabetic Wound Healing. Int. J. Biol. Macromol. 2024, 254, 128060. https://doi.org/10.1016/j.ijbiomac.2023.128060
[55] Nirmala Devi, M.; Sanjiv Raj, K.; Subramanian, V. K. Synergistic Effects of Magnesium and EDTA on Polymorphism and Morphology of CaCO3 and Its Influence on Scale. J. Cryst. Growth 2021, 564, 126108. https://doi.org/10.1016/j.jcrysgro.2021.126108
[56] Boyjoo, Y.; Pareek, V. K.; Liu, J. Synthesis of Micro and Nano-Sized Calcium Carbonate Particles and Their Applications. J. Mater. Chem. A 2014, 2, 14270–14288. https://doi.org/10.1039/c4ta02070g
[57] Meng, L.; Wang, J.; Liu, Q.; Fan, Z. Hydrophobic Calcium Carbonate with Hierarchical Micro-/Nanostructure for Improving Foaming Capacity. Mater. Res. Express 2019, 6, 1250c8. https://doi.org/10.1088/2053-1591/ab63fc
[58] Sing, K. S. W. Reporting Physisorption Data for Gas/Solid Systems. Pure Appl. Chem. 1982, 54, 2201–2218. https://doi.org/10.1351/pac198254112201
[59] Ma, X.; Du, Y.; Fu, C.; Fang, H.; Wei, H.; Pan, Z.; Sang, S.; Zhang, J. Effects of Supercritical CO2 on the Pore Structure Complexity of High-Rank Coal with Water Participation and the Implications for CO2ECBM. ACS Omega 2023, 8, 18964–18980. https://doi.org/10.1021/acsomega.3c01486
[60] Chen, J.; Nichols, B. L. B.; Norris, A. M.; Frazier, C. E.; Edgar, K. J. All-Polysaccharide, Self-Healing Injectable Hydrogels Based on Chitosan and Oxidized Hydroxypropyl Polysaccharides. Biomacromolecules 2020, 21, 4261–4272. https://doi.org/10.1021/acs.biomac.0c01046
[61] Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, 1–41. https://doi.org/10.1002/advs.202303326
[62] Longsworth, L. G. Temperature Dependence of Diffusion in Aqueous Solutions. J. Phys. Chem. 1954, 58, 770–773. https://doi.org/10.1021/j150519a017
[63] Farzan, M.; Roth, R.; Schoelkopf, J.; Huwyler, J.; Puchkov, M. The Processes behind Drug Loading and Release in Porous Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2023, 189, 133–151. https://doi.org/10.1016/j.ejpb.2023.05.019
[64] Frenning, G. Modelling Drug Release from Inert Matrix Systems: From Moving-Boundary to Continuous-Field Descriptions. Int. J. Pharm. 2011, 418, 88–99. https://doi.org/10.1016/j.ijpharm.2010.11.030