Porous Sodium Alginate Hydrogel Films for Immediate Release Drug Delivery Systems
Attachment | Size |
---|---|
full_text.pdf | 78.5 KB |
Keywords:
[1] Xue, H.; Ju, Y.; Ye, X.; Dai, M.; Tang, C.; Liu, L. Construction of Intelligent Drug Delivery System Based on Polysaccharide-Derived Polymer Micelles: A Review. Int. J. Biol. Macromol. 2024, 254, 128048. https://doi.org/10.1016/j.ijbiomac.2023.128048
[2] Galasso, C.; Ruocco, N.; Mutalipassi, M.; Barra, L.; Costa, V.; Giommi, C.; Dinoi, A.; Genovese, M.; Pica, D.; Romano, C.; Greco, S.; Pennesi, C. Marine Polysaccharides, Proteins, Lipids, and Silica for Drug Delivery Systems: A Review. Int. J. Biol. Macromol. 2023, 253, 127145. https://doi.org/10.1016/j.ijbiomac.2023.127145
[3] Putro, J. N.; Soetaredjo, F. E.; Lunardi, V. B.; Irawaty, W.; Yuliana, M.; Santoso, S. P.; Puspitasari, N.; Wenten, I. G.; Ismadji, S. Polysaccharides Gums in Drug Delivery Systems: A Review. Int. J. Biol. Macromol. 2023, 253, 127020. https://doi.org/10.1016/j.ijbiomac.2023.127020
[4] Gomzyak, V. I.; Sedush, N. G.; Puchkov, A. A.; Polyakov, D. K.; Chvalun, S. N. Linear and Branched Lactide Polymers for Targeted Drug Delivery Systems. Polym. Sci. Ser. B 2021, 63, 257–271. https://doi.org/10.1134/S1560090421030064
[5] Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. Biom. Techn. 2024, 5, 109–122. https://doi.org/10.1016/j.bmt.2023.09.001
[6] Wen, H.; Jung, H.; Li, X. Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. AAPS J. 2015, 17, 1327–1340. https://doi.org/10.1208/s12248-015-9814-9
[7] Raina, N.; Pahwa, R.; Bhattacharya, J.; Paul, A. K.; Nissapatorn, V.; Pereira, M. de L.; Oliveira, S. M. R.; Dolma, K. G.; Rahmatullah, M.; Wilairatana, P. et al. Drug Delivery Strategies and Biomedical Significance of Hydrogels: Translational Considerations. Pharmaceutics 2022, 14, 1–31. https://doi.org/10.3390/pharmaceutics14030574
[8] Hussain, M.; Hafeez, A.; Kushwaha, S. P. Nanoformulation Mediated Transdermal Delivery of Anti-Diabetic Drugs: An Updated Review. Intell. Pharm. 2023, 1, 192–200. https://doi.org/10.1016/j.ipha.2023.08.009
[9] Xu, Y.; Zhao, M.; Cao, J.; Fang, T.; Zhang, J.; Zhen, Y.; Wu, F.; Yu, X.; Liu, Y.; Li, J.; et al. Applications and Recent Advances in Transdermal Drug Delivery Systems for the Treatment of Rheumatoid Arthritis. Acta Pharm. Sin. B 2023, 13, 4417–4441. https://doi.org/10.1016/j.apsb.2023.05.025
[10] Parihar, A.; Prajapati, B. G.; Paliwal, H.; Shukla, M.; Khunt, D.; Devrao Bahadure, S.; Dyawanapelly, S.; Junnuthula, V. Advanced Pulmonary Drug Delivery Formulations for the Treatment of Cystic Fibrosis. Drug Discov. Today 2023, 28, 103729. https://doi.org/10.1016/j.drudis.2023.103729
[11] Xiong, S.; Ye, S.; Ni, P.; Zhong, M.; Shan, J.; Yuan, T.; Liang, J.; Fan, Y.; Zhang, X. Polyvinyl-Alcohol, Chitosan and Graphene-Oxide Composed Conductive Hydrogel for Electrically Controlled Fluorescein Sodium Transdermal Release. Carbohydr. Polym. 2023, 319, 121172. https://doi.org/10.1016/j.carbpol.2023.121172
[12] Vasowala, T.; Gharat, S.; Mhase, M.; Momin, M. Advances in Hydrogels Based Cutaneous Drug Delivery System for Management of Psoriasis. Eur. Polym. J. 2024, 202, 112630. https://doi.org/10.1016/j.eurpolymj.2023.112630
[13] Schoenmakers, D. C.; Rowan, A. E.; Kouwer, P. H. J. Crosslinking of Fibrous Hydrogels. Nat. Commun. 2018, 9, 1–8. https://doi.org/10.1038/s41467-018-04508-x
[14] Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. https://doi.org/10.1002/adma.200501612
[15] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng. C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
[16] Alven, S.; Aderibigbe, B. A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 1–30. https://doi.org/10.3390/ijms21249656
[17] Dreiss, C. A. Hydrogel Design Strategies for Drug Delivery. Curr. Opin. Colloid Interface Sci. 2020, 48, 1–17. https://doi.org/10.1016/j.cocis.2020.02.001
[18] Chang, S. H.; Custer, P. L.; Mohadjer, Y.; Scott, E. Use of Lorenz Titanium Implants in Orbital Fracture Repair. Ophthal. Plast. Reconstr. Surg. 2009, 25, 119–122. https://doi.org/10.1097/IOP.0b013e31819ac7c5
[19] Wang, L.; Neumann, M.; Fu, T.; Li, W.; Cheng, X.; Su, B. L. Porous and Responsive Hydrogels for Cell Therapy. Curr. Opin. Colloid Interface Sci. 2018, 38, 135–157. https://doi.org/10.1016/j.cocis.2018.10.010
[20] El-Sherbiny, I. M.; Yacoub, M. H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob. Cardiol. Sci. Pract. 2013, 2013, 38. https://doi.org/10.5339/gcsp.2013.38
[21] Tiwari, R.; Pathak, K. Local Drug Delivery Strategies towards Wound Healing. Pharmaceutics 2023, 15, 1–39. https://doi.org/10.3390/pharmaceutics15020634
[22] Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P. X. Antibacterial Anti-Oxidant Electroactive Injectable Hydrogel as Self-Healing Wound Dressing with Hemostasis and Adhesiveness for Cutaneous Wound Healing. Biomaterials 2017, 122, 34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011
[23] Harrison, I. P.; Spada, F. Hydrogels for Atopic Dermatitis and Wound Management: A Superior Drug Delivery Vehicle. Pharmaceutics 2018, 10, 71. https://doi.org/10.3390/pharmaceutics10020071
[24] Affes, S.; Aranaz, I.; Acosta, N.; Heras, Á.; Nasri, M.; Maalej, H. Chitosan Derivatives-Based Films as pH-Sensitive Drug Delivery Systems with Enhanced Antioxidant and Antibacterial Properties. Int. J. Biol. Macromol. 2021, 182, 730–742. https://doi.org/10.1016/j.ijbiomac.2021.04.014
[25] Sarwar, M. S.; Ghaffar, A.; Huang, Q.; Zafar, M. S.; Usman, M.; Latif, M. Controlled-Release Behavior of Ciprofloxacin from a Biocompatible Polymeric System Based on Sodium Alginate/Poly(Ethylene Glycol) Mono Methyl Ether. Int. J. Biol. Macromol. 2020, 165, 1047–1054. https://doi.org/10.1016/j.ijbiomac.2020.09.196
[26] Aliakbar Ahovan, Z.; Esmaeili, Z.; Eftekhari, B. S.; Khosravimelal, S.; Alehosseini, M.; Orive, G.; Dolatshahi-Pirouz, A.; Pal Singh Chauhan, N.; Janmey, P. A.; Hashemi, A. et al. Antibacterial Smart Hydrogels: New Hope for Infectious Wound Management. Mater. Today Bio 2022, 17, 100499. https://doi.org/10.1016/j.mtbio.2022.100499
[27] Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. U. Insight into Hydrogels. Des. Monomers Polym. 2016, 19, 456–478. https://doi.org/10.1080/15685551.2016.1169380
[28] Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. https://doi.org/10.3390/gels3010006
[29] Catoira, M. C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of Natural Hydrogels for Regenerative Medicine Applications. J. Mater. Sci. Mater. Med. 2019, 30, 115. https://doi.org/10.1007/s10856-019-6318-7
[30] Tavakoli, S.; Klar, A. S. Advanced Hydrogels as Wound Dressings. Biomolecules 2020, 10, 1–20. https://doi.org/10.3390/biom10081169
[31] Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020, 12, 1–60. https://doi.org/10.3390/polym12112702
[32] Banerjee, R.; Kumar, K. J.; Kennedy, J. F. Structure and Drug Delivery Relationship of Acidic Polysaccharides: A Review. Int. J. Biol. Macromol. 2023, 243, 125092. https://doi.org/10.1016/j.ijbiomac.2023.125092
[33] Hurtado, A.; Aljabali, A. A. A.; Mishra, V.; Tambuwala, M. M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. https://doi.org/10.3390/ijms23094486
[34] Maiti, S.; Maji, B.; Yadav, H. Progress on Green Crosslinking of Polysaccharide Hydrogels for Drug Delivery and Tissue Engineering Applications. Carbohydr. Polym. 2023, 326, 121584. https://doi.org/10.1016/j.carbpol.2023.121584
[35] Xie, Y.; Kollampally, S. C. R.; Jorgensen, M.; Zhang, X. Alginate Microfibers as Therapeutic Delivery Scaffolds and Tissue Mimics. Exp. Biol. Med. 2022, 247, 2103–2118. https://doi.org/10.1177/15353702221112905
[36] Cao, Y., Cong, H., Yu, B., Shen, Y. A Review on the Synthesis and Development of Alginate Hydrogels for Wound Therapy. J. Mater. Chem. B 2023, 11, 2801–2829. https://doi.org/10.1039/d2tb02808e
[37] Wang, C.; Liu, H.; Gao, Q.; Liu, X.; Tong, Z. Alginate-Calcium Carbonate Porous Microparticle Hybrid Hydrogels with Versatile Drug Loading Capabilities and Variable Mechanical Strengths. Carbohydr. Polym. 2008, 71, 476–480. https://doi.org/10.1016/j.carbpol.2007.06.018
[38] Robertsa, J.R.; Rittera, D. W.; McShane, M.J. A Design Full of Holes: Functional Nanofilm-Coated Microdomains in Alginate Hydrogels. J Mater Chem B Mater Biol Med. 2013, 107, 3195–3201. https://doi.org/10.1039/C3TB20477D
[39] Zhou, Z.; Zhou, S.; Zhang, X.; Zeng, S.; Xu, Y.; Nie, W.; Zhou, Y.; Xu, T.; Chen, P. Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. Bioconjug. Chem. 2023, 34, 302–325. https://doi.org/10.1021/acs.bioconjchem.2c00598
[40] Obłąk, E.; Piecuch, A.; Rewak-Soroczyńska, J.; Paluch, E. Activity of Gemini Quaternary Ammonium Salts against Microorganisms. Appl. Microbiol. Biotechnol. 2019, 103, 625–632. https://doi.org/10.1007/s00253-018-9523-2
[41] Tischer, M.; Pradel, G.; Ohlsen, K.; Holzgrabe, U. Quaternary Ammonium Salts and Their Antimicrobial Potential: Targets or Nonspecific Interactions? Chem.Med.Chem 2012, 7, 22–31. https://doi.org/10.1002/cmdc.201100404
[42] Hoque, J.; Akkapeddi, P.; Yarlagadda, V.; Uppu, D. S. S. M.; Kumar, P.; Haldar, J. Cleavable Cationic Antibacterial Amphiphiles: Synthesis, Mechanism of Action, and Cytotoxicities. Langmuir 2012, 28, 12225–12234. https://doi.org/10.1021/la302303d
[43] Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial Polymeric Materials with Quaternary Ammonium and Phosphonium Salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. https://doi.org/10.3390/ijms16023626
[44] Ivantsyk, L. B.; Drogovoz, S. M.; Gerbina, N. A.; Каlко, К. А.; Shtroblia, V. V. Advantages of the Composition and Actyvity of a New Combined Ointment with Ethony for Treatment of the Wound Process. Likarska Sprava 2019, 2019, 126–133. https://doi.org/10.31640/jvd.1-2.2019(19)
[45] Obłak, E.; Piecuch, A.; Krasowska, A.; Łuczyński, J. Antifungal Activity of Gemini Quaternary Ammonium Salts. Microbiol. Res. 2013, 168, 630–638. https://doi.org/10.1016/j.micres.2013.06.001
[46] Guo, R.; Du, X.; Zhang, R.; Deng, L.; Dong, A.; Zhang, J. Bioadhesive Film Formed from a Novel Organic-Inorganic Hybrid Gel for Transdermal Drug Delivery System. Eur. J. Pharm. Biopharm. 2011, 79, 574–583. https://doi.org/10.1016/j.ejpb.2011.06.006
[47] Prausnitz, M. R.; Langer, R. Transdermal Drug Delivery. Nat. Biotechnol. 2008, 26, 1261–1268. https://doi.org/10.1038/nbt.1504
[48] Li, N.; Qin, Y.; Dai, D.; Wang, P.; Shi, M.; Gao, J.; Yang, J.; Xiao, W.; Song, P.; Xu, R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front. Bioeng. Biotechnol. 2022, 9, 804415. https://doi.org/10.3389/fbioe.2021.804415
[49] Goncharuk, O.; Gunko, V. M.; Ugnivenko, A.; Terpilowski, K.; Skwarek, E.; Janusz, W. Effect of Ethonium Adsorption on Structure Formation in Nanosilica Dispersions. Nano Res. Appl. 2017, 03, 1–7. https://doi.org/10.21767/2471-9838.100029
[50] Sikach, A. V.; Konovalova, V. V.; Kolesnyk, I. S. Hydrogel Films Based on Sodium Alginate Modified With Octane-1-Amine: Enhanced Pore Formation and Potential Applications in Drug Delivery Systems. Khimia, Fizyka ta Tehnologia Poverhni 2024, 15, 43–56. https://doi.org/10.15407/hftp15.01.043
[51] Kumar, P.; Honnegowda, T. Effect of Limited Access Dressing on Surface pH of Chronic Wounds. Plast. Aesthetic Res. 2015, 2, 257. https://doi.org/10.4103/2347-9264.165449
[52] Ainurofiq, A.; Choiri, S. Model and Release Pattern of Water Soluble Drug from Natural-Polymer Based Sustained Release Tablet Dosage Form. Int. J. Pharm. Pharm. Sci. 2014, 6, 179–182.
[53] Li, L.; Yang, Y.; Lv, Y.; Yin, P.; Lei, T. Porous Calcite CaCO3 Microspheres: Preparation, Characterization and Release Behavior as Doxorubicin Carrier. Colloid Surfaces B. 2020, 186, 110720. https://doi.org/10.1016/j.colsurfb.2019.110720
[54] Kumar, A. S.; Prema, D.; Rao, R. G.; Prakash, J.; Balashanmugam, P.; Devasena, T.; Venkatasubbu, G. D. Fabrication of Poly (Lactic-Co-Glycolic Acid)/Gelatin Electro Spun Nanofiber Patch Containing CaCO3/SiO2 Nanocomposite and Quercetin for Accelerated Diabetic Wound Healing. Int. J. Biol. Macromol. 2024, 254, 128060. https://doi.org/10.1016/j.ijbiomac.2023.128060
[55] Nirmala Devi, M.; Sanjiv Raj, K.; Subramanian, V. K. Synergistic Effects of Magnesium and EDTA on Polymorphism and Morphology of CaCO3 and Its Influence on Scale. J. Cryst. Growth 2021, 564, 126108. https://doi.org/10.1016/j.jcrysgro.2021.126108
[56] Boyjoo, Y.; Pareek, V. K.; Liu, J. Synthesis of Micro and Nano-Sized Calcium Carbonate Particles and Their Applications. J. Mater. Chem. A 2014, 2, 14270–14288. https://doi.org/10.1039/c4ta02070g
[57] Meng, L.; Wang, J.; Liu, Q.; Fan, Z. Hydrophobic Calcium Carbonate with Hierarchical Micro-/Nanostructure for Improving Foaming Capacity. Mater. Res. Express 2019, 6, 1250c8. https://doi.org/10.1088/2053-1591/ab63fc
[58] Sing, K. S. W. Reporting Physisorption Data for Gas/Solid Systems. Pure Appl. Chem. 1982, 54, 2201–2218. https://doi.org/10.1351/pac198254112201
[59] Ma, X.; Du, Y.; Fu, C.; Fang, H.; Wei, H.; Pan, Z.; Sang, S.; Zhang, J. Effects of Supercritical CO2 on the Pore Structure Complexity of High-Rank Coal with Water Participation and the Implications for CO2ECBM. ACS Omega 2023, 8, 18964–18980. https://doi.org/10.1021/acsomega.3c01486
[60] Chen, J.; Nichols, B. L. B.; Norris, A. M.; Frazier, C. E.; Edgar, K. J. All-Polysaccharide, Self-Healing Injectable Hydrogels Based on Chitosan and Oxidized Hydroxypropyl Polysaccharides. Biomacromolecules 2020, 21, 4261–4272. https://doi.org/10.1021/acs.biomac.0c01046
[61] Feng, W.; Wang, Z. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv. Sci. 2023, 10, 1–41. https://doi.org/10.1002/advs.202303326
[62] Longsworth, L. G. Temperature Dependence of Diffusion in Aqueous Solutions. J. Phys. Chem. 1954, 58, 770–773. https://doi.org/10.1021/j150519a017
[63] Farzan, M.; Roth, R.; Schoelkopf, J.; Huwyler, J.; Puchkov, M. The Processes behind Drug Loading and Release in Porous Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2023, 189, 133–151. https://doi.org/10.1016/j.ejpb.2023.05.019
[64] Frenning, G. Modelling Drug Release from Inert Matrix Systems: From Moving-Boundary to Continuous-Field Descriptions. Int. J. Pharm. 2011, 418, 88–99. https://doi.org/10.1016/j.ijpharm.2010.11.030