Покращення довгострокової ефективності полівінілхлориду (ПВХ)

Witold Brostow1, Hanna Fałtynowicz2, Nathalie Hnatchuk1, Yu-Chia “Mark” Yang1
Affiliation: 
1 Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207, USA 2 Faculty of Chemistry, Wrocław University of Science and Technology, 7/9 Gdańska St., Wrocław 50-344, Poland wkbrostow@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.04.543
AttachmentSize
PDF icon full_text.pdf1.55 MB
Abstract: 
Оскільки чистий ПВХ є жорстким, у всіх сферах застосування до нього додають пластифікатор. Міграція пластифікатора призводить до крихкості еластичного ПВХ і забруднення довкілля. Ми використовували три типи зшиваючого агенту, змішаного з комерційним ПВХ, пластифікатором і термічним стабілізатором. Проводили термообробку за температури 100, 121 і 136 оС. Ми провели випробування на розтягування, випробування на динамічне тертя, визначення швидкості зношування, визначення стійкості до подряпин, випробування водопоглинання та SEM-аналіз, щоб зробити вибір придатних для достатнього зшивання для тривалого застосування композицій.
References: 

[1] Baumann, E. Über einige Vinylverbindungen. In Annalen der Chemie und Pharmacie; Wöhler, F.; Liebig, J.; Kopp, H.; Erlenmeyer, E.; Volhard, J., Eds.; CLXIII; G.F. Winter′sche Verlagchandlung: Leipzig und Heidelberg, 1872; pp. 308-322.
[2] Semon, W.L.; Stahl, G.A. History of Vinyl Chloride Polymers. J. Macromol. Sci. A Chem. 1981, 15, 1263-1278. https://doi.org/10.1080/00222338108066464
[3] Gao, C.; Huang, L.; Yan, L.; Jin, R.; Kasal, B. Strength and Ductility Improvement of Recycled Aggregate Concrete by Polyester FRP-PVC Tube Confinement. Compos. B Eng. 2019, 162, 178-197. https://doi.org/10.1016/j.compositesb.2018.10.102
[4] Maiti, S.; Bera, R.; Karan, S.K.; Paria, S.; Khatua, B.B. PVC Bead Assisted Selective Dispersion of MWCNT for Designing Efficient Electromagnetic Interference Shielding PVC/MWCNT Nanocomposite with Very Low Percolation Threshold. Compos. B Eng. 2019, 167, 377-386. https://doi.org/10.1016/j.compositesb.2019.03.012
[5] Khan, M.S.; Patil, R. Statistical Analysis of Acoustic Response of PVC Pipes for Crack Detection. SoutheastCon 2018, St. Petersburg, FL USA, 19-22 April 2018, 18133849. https://doi.org/10.1109/SECON.2018.8478858
[6] Levytskyj, V.; Laruk, J.; Humenetsky, T.; Sikora, J. The influence of Polystyrene Modifier and Plasticizer Nature on the Properties of Poly(vinyl chloride). Chem. Chem. Technol. 2015, 9, 199-203. https://doi.org/10.23939/chcht09.02.199
[7] Xu, Y.; Liu, Z.; Park, J.; Clausen, P.A.; Benning, J.L.; Little, J.C. Measuring and Predicting the Emission Rate of Phthalate Plasticizer from Vinyl Flooring in a Specially-Designed Chamber. Environ. Sci. Technol. 2012, 46, 12534-12541. https://doi.org/10.1021/es302319m
[8] Ambrogi, V.; Brostow, W.; Carfagna, C.; Pannico, M.; Persico, P. Plasticizer Migration from Cross‐Linked Flexible PVC: Effects on Tribology and Hardness. Polym. Eng. Sci. 2012, 52, 211-217. https://doi.org/10.1002/pen.22070
[9] Brostow, W.; Lu, X.; Osmanson, A.T. Nontoxic Bio-Plasticizers for PVC as Replacements for Conventional Toxic Plasticizers. Polym. Test. 2018, 69, 63-70. https://doi.org/10.1016/j.polymertesting.2018.03.007
[10] W. Brostow, N. Hnatchuk, T. Kim, Preventing Thermal Degradation of PVC Insulation by Mixtures of Cross-Linking Agents and Antioxidants. J. Appl. Polym. Sci. 2020, 137, 48816. https://doi.org/10.1002/app.48816
[11] Liu, Y.-B.; Liu, W.-Q.; Hou, M.-H. Metal Dicarboxylates as Thermal Stabilizers For PVC. Polym. Degrad. Stab. 2007, 92, 1565-1571. https://doi.org/10.1016/j.polymdegradstab.2007.05.003
[12] Underwriters Laboratories Inc., UL83: Thermoplastic-Insulated Wires and Cables, 2014. http://ulstandards.ul.com/standard/?id=83_14
[13] Underwriters Laboratories Inc., UL2556: Wire and Cable Test Methods, 2015 https://standardscatalog.ul.com/standards/en/standard_2556_4 (2015)
[14] Brostow, W.; Kovacevic, V.; Vrsaljko, D.; Whitworth, J. Tribology of Polymers and Polymer-Based Composites. J. Mater. Educ. 2010, 32, 273-290.
[15] Brostow, W.; Hagg Lobland, H.E. Materials: Introduction and Applications; John Wiley & Sons: New Jersey, 2017.
[16] Egerton, R.F.; Li, P.; Malac, M. Radiation Damage in the TEM and SEM. Micron 2004, 35, 399-409. https://doi.org/10.1016/j.micron.2004.02.003
[17] Nijenhuis, K.T.; Winter, H.H. Mechanical Properties at the Gel Point of a Crystallizing Poly(Vinyl Chloride) Solution. Macromolecules 1989, 22, 411-414. https://doi.org/10.1021/ma00191a074
[18] Viana, G.M.; Carlsson, L.A. Mechanical Properties and Fracture Characterization of Cross-Linked PVC Foams, J. Sandw. Struct. Mater. 2002, 4, 99-113. https://doi.org/10.1177/1099636202004002227
[19] Hidalgo, M.; Beltran, M.I.; Reinecke, H.; Mijangos, C. Thermal and mechanical Properties of Silane‐Crosslinked Poly(vinylchloride). J. Appl. Polym. Sci. 1998, 70, 865-872. https://doi.org/10.1002/(SICI)1097-4628(19981031)70:5%3C865::AID-APP5%3E3.0.CO;2-R
[20] Galvin, A.; Kang, L.; Tipper, J.; Stone, M.; Ingham, E.; Jin, Z.; Fisher, J. Wear of Crosslinked Polyethylene under Different Tribological Conditions. J. Mater. Sci. Mater. Med. 2006, 17, 235-243. https://doi.org/10.1007/s10856-006-7309-z
[21] Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding Wear, Viscoelasticity and Brittleness of Polymers. J. Mater. Res. 2006, 21, 2422-2428. https://doi.org/10.1557/jmr.2006.0300
[22] Brostow, W.; Hagg Lobland, H.E.; Khoja, S. Brittleness and Toughness of Polymers and Other Materials, Mater. Lett. 2015, 159, 478-480. https://doi.org/10.1016/j.matlet.2015.07.047
[23] Sangaj, N.S.; Malshe, V.C. Permeability of Polymers in Protective Organic Coatings. Progr. Org. Coat. 2004, 50, 28-39. https://doi.org/10.1016/j.porgcoat.2003.09.015
[24] Speel, R.; LeMaire, P.K. Direct Current Electrical Conductivity of Versicon™ Blended in Poly(vinyl chloride). J. Mater. Res. 1997, 12, 1183-1186. https://doi.org/10.1557/JMR.1997.0165
[25] Vasseur, J.O.; Deymier, P.A. Propagation of Acoustic Waves in Periodic and Random Two-Dimensional Composite Media, J. Mater. Res. 1997, 12, 2207-2212. https://doi.org/10.1557/JMR.1997.0295
[26] Joneydi, S.; Khoddami, A.; Zadhoush, A. Novel Superhydrophobic Top Coating on Surface Modified PVC-Coated Fabric. Prog. Org. Coat. 2013, 76, 821-826. https://doi.org/10.1016/j.porgcoat.2013.01.011
[27] Olad, A.; Nosrati, R. Preparation and Corrosion Resistance of Nanostructured PVC/ZnO–polyaniline Hybrid Coating. Prog. Org. Coat. 2013, 76, 113-118. https://doi.org/10.1016/j.porgcoat.2012.08.017
[28] Vesely, D.; Kalendova, A.; Manso, M.V. Properties of Calcined Kaolins in Anticorrosion Paints Depending on PVC, Chemical Composition and Shape of Particles. Prog. Org. Coat. 2012, 74, 82-91. https://doi.org/10.1016/j.porgcoat.2011.11.017
[29] Herbert, E.G.; Oliver, W.C.; Lumsdaine, A.; Pharr, G.M. Measuring the Constitutive Behavior of Viscoelastic Solids in the Time and Frequency Domain Using Flat Punch Nanoindentation. J. Mater. Res. 2009, 24, 626-637. https://doi.org/10.1557/jmr.2009.0089
[30] Meng, W.; Dong, Y.; Li, J.; Cheng, L.; Zhang, H.; Wang, C.; Jiao, Y.; Xu, J.; Hao, J.; Qu, H. Bio-Based Phytic Acid and Tannic Acid Chelate-Mediated Interfacial Assembly of Mg(OH)2 for Simultaneously Improved Flame Retardancy, Smoke Suppression and Mechanical Properties of PVC. Compos. B Eng. 2020, 188, 107854. https://doi.org/10.1016/j.compositesb.2020.107854