Перетворення гексоз на природних і синтетичних цеолітах
Attachment | Size |
---|---|
full_text.pdf | 369.05 KB |
Keywords:
[1] Kukhar, V.P. Bioresursy – Potentsialna Syrovyna dlia Promyslovogo Organichnogo Syntezu. Kataliz i Neftekhimia 2007, 15, 1-15 (in Ukrainian).
[2] Esteban, J.; Yustos, P.; Ladero, M. Catalytic Processes from Biomass-Derived Hexoses and Pentoses: A Recent Literature Over-view. Catalysts 2018, 8, 637. https://doi.org/10.3390/catal8120637
[3] Dron, I.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
[4] Chen, N.; Zhu, Z.; Ma, H.; Liao, W.; Lü, H. Catalytic Upgrad-ing of Biomass-derived 5-Hydroxymethylfurfural to Biofuel 2,5-Dimethylfuran over Beta Zeolite Supported Non-noble Co Catalyst. Mol. Catal. 2020, 486, 110882. https://doi.org/10.1016/j.mcat.2020.110882
[5] Chithra, P.A.; Darbha, S. Catalytic Conversion of HMF into Ethyl Levulinate – A Biofuel over Hierarchical Zeolites. Catal. Commun. 2020, 140, 105998. https://doi.org/10.1016/j.catcom.2020.105998
[6] Kläusli, T. AVA Biochem: Commercialising Renewable Plat-form Chemical 5-HMF. Green Process. Synth. 2014, 3, 235–236. https://doi.org/10.1515/gps-2014-0029
[7] Saravanamurugan, S.; Paniagua, M.; Melero, J.A.; Riisager, A. Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media. J. Am. Chem. Soc. 2013, 135, 14, 5246–5249. https://doi.org/10.1021/ja400097f
[8] Saravanamurugan, S.; Riisager, A.; Taarning, E.; Meier, S. Combined Function of Brönsted and Lewis Acidity in the Zeolite-Catalyzed Isomerization of Glucose to Fructose in Alcohols. Chem-CatChem. 2016, 8, 3107–3111. https://doi.org/10.1002/cctc.201600783
[9] Pienkoss, F.; Ochoa-Hernandez, C.; Theyssen, N.; Leitner, W. Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustain. Chem. Eng. 2018, 6, 8782–8789. https://doi.org/10.1021/acssuschemeng.8b01151
[10] Levytska S.I. Doslidzhennia Izomeryzatsii Glukozy u Fruk-tozu na MgO-ZrO2 Katalizatori v Protochnyh Umovah. Kataliz i Neftekhimia 2017, 26, 46–52 (in Ukraine).
[11] Vieira, J.L.; Almeida-Trapp, M.; Mithöfer, A.; Plass, W.; Gallo, J.M.R. Rationalizing the Conversion of Glucose and Xylose Catalyzed by a Combination of Lewis and Brönsted Acids. Catal. Today 2020, 344, 92–101. https://doi.org/10.1016/j.cattod.2018.10.032
[12] Van Putten, R-J.; Van der Waal, J.C.; De Jong, E.; Rasrendra, C.B.; Heeres, H.J.; de Vries, J.G.; Hydroxymethylfurfural, a Versatile Platform Chemical Made from Renewable Resources. Chem. Rev. 2013, 113, 1499–1597. https://doi.org/10.1021/cr300182k
[13] Cui, J.; Tan, J.; Deng, T.; Cui, X.; Zhu, Y.; Li,Y. Conversion of Carbohydrates to Furfural via Selective Cleavage of the Carbon-Carbon Bond: The Cooperative Effects of Zeolite and Solvent. Green Chem. 2016, 18, 1619–1624. https://doi.org/10.1039/C5GC01948F
[14] Cui, M.; Wu, Z.; Huang, R.; Qi, W.; Su, R.; He, Z. Integrating Chromium-Based Ceramic and Acid Catalysis to Convert Glucose into 5-Hydroxymethylfurfural. Renew. Energ. 2018, 125, 327–333. https://doi.org/10.1016/j.renene.2018.02.085
[15] Parveen, F.; Upadhyayula, S. Efficient Conversion of Glucose to HMF Using Organocatalysts with Dual Acidic and Basic Functionalities—A Mechanistic and Experimental Study. Fuel Process. Technol. 2017, 162, 30–36. https://doi.org/10.1016/j.fuproc.2017.03.021
[16] Tosi, I.; Riisager, A.; Taarning, E.; Jensen, P.R.; Meier, S. Kinetic Analysis of Hexose Conversion to Methyl Lactate by Sn-Beta: Effects of Substrate Masking and of Water. Catal. Sci. Tech-nol. 2018, 8, 2137–2145. https://doi.org/10.1039/C8CY00335A
[17] Zhang, L.; Xi, G.; Chen, Z.; Jiang, D.; Yu, H.; Wang, X. Highly Selective Conversion of Glucose into Furfural over Modified zeolites. Chem. Eng. J. 2017, 307, 868–876. http://dx.doi.org/10.1016/j.cej.2016.09.001
[18] Moreno-Recio, M.; Santamaría-González, J.; Maireles-Torres, P. Brönsted and Lewis Acid ZSM-5 Zeolites for the Catalytic Dehydration of Glucose into 5-Hydroxymethylfurfural. Chem. Eng. J. 2016, 303, 22–30. https://doi.org/10.1016/j.cej.2016.05.120
[19] Hu, D.; Zhang, M.; Xu, H.; Wang, Y.; Yan, K. Recent Ad-vance on the Catalytic System for Efficient Production of Biomass-Derived 5-Hydroxymethylfurfural. Renew. Sust. Energ. Rev. 2021, 147, 111253. https://doi.org/10.1016/j.rser.2021.111253
[20] Patrylak, L.K.; Pertko, O.P.; Yakovenko, A.V.; Voloshyna, Yu.G.; Povazhnyi, V.A.; Kurmach, M.M. Isomerization of Linear Hexane over Acid-Modified Nanosized Nickel-Containing Natural Ukrainian Zeolites. Appl. Nanosci. 2022, 12, 411-425. https://doi.org/10.1007/s13204-021-01682-1
[21] Dyer, A.; Hriljac, J.; Evans, N.; Stokes I.; Rand, P.; Kellet, S.; Harjula, R.; Moller, T.; Maher, Z.; Heatlie-Branson, R. et al. The Use of Columns of the Zeolite Clinoptilolite in the Remediation of Aqueous Nuclear Waste Streams. J. Radioanal. Nucl. Chem. 2018, 318, 2473–2491. https://doi.org/10.1007/s10967-018-6329-8
[22] Al-Maliki, S.B.; Al-Khayat, Z.O.; Abdulrazzak, I.A.; AlAni, A. The Effectiveness of Zeolite for The Removal of Heavy Metals From an Oil Industry Wastewater. Chem. Chem. Technol. 2022, 16, 255–258. https://doi.org/10.23939/chcht16.02.255
[23] Patrylak, L.; Konovalov, S.; Pertko, O.; Yakovenko, A.; Povazhnyi, V.; Melnychuk, O. Obtaining Glucose-Based 5-Hydroxymethylfurfural on Large-Pore Zeolites. East.-Eur. J. En-terp. Technol. 2021, 2, 38-44. https://doi.org/10.15587/1729-4061.2021.226575
[24] Patrylak, L.; Konovalov, S.; Yakovenko, A.; Pertko, O.; Povazhnyi, V.; Kurmach, M.; Voloshyna, Yu.; Filonenko, M.; Zubenko, S. Fructose Transformation into 5-Hydroxymethylfurfural over Natural Transcarpathian Zeolites. Chem. Chem. Technol. 2022, 16, 521-531. https://doi.org/10.23939/chcht16.04.521
[25] Rouqerol, F.; Rouqerol, J.; Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications; Academic Press, 1998.
[26] Patrylak, L.K.; Pertko, O.P.; Povazhnyi, V.A.; Yakovenko, A.V.; Konovalov, S.V. Evaluation of Nickel-Containing Zeolites in the Catalytic Transformation of Glucose in an Aqueous Medium. Appl. Nanosci. 2022, 12, 869-882. https://doi.org/10.1007/s13204-021-01771-1
[27] Sprynskyy, M.; Golembiewski, R.; Trykowski, G.; Buszewski, B. Heterogeneity and Hierarchy of Clinoptilolite Poros-ity. J. Phys. Chem. Solids. 2010, 71, 1269-1277. https://doi.org/10.1016/j.jpcs.2010.05.006
[28] Baerlocher, Ch.; Meier, W.M.; Olson, D.N. Atlas of zeolite structure types; Elsevier: Amsterdam, 2007.