Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Одержання і дослідження перспективних видів природних сорбентів для модифікації мінеральних добрив

Viktoriia Vakal1, Tetyana Izmodenova1, Serhii Vakal1, Kyryl Shepeta2, Myroslav Malovanyy3
Affiliation: 
1 Research Institute of Mineral Fertilizers and Pigments of Sumy State University, 116 Kharkivska St., Sumy 40007, Ukraine 2 Limited liability company “CROP-INCREASE”, 8 1St Svoboda lane, Romny 42000, Ukraine 3 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine vsvakal@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
У статті розглянуто виробництво високоефективних добрив з перспективними модифікаторами. Дослідження різних типів сорбентів показало, що нанопориста структура дає змогу здійснювати контрольоване розчинення в ґрунті поживних речовин і зменшити їхні втрати та скоротити викиди парникових газів у довкілля. Методом піролізу було проведено експерименти з отримання біовугілля з різних видів органічної сировини. Дослідження мікропористої структури отриманих зразків біовугілля здійснювали методом сканувальної мікроскопії з елементним мікроаналізом. Результати агрохімічних досліджень показали, що на зростання кількості біомаси на 61,22-66,6% за результатами статистичної обробки відповідальним фактором є добрива, а сила впливу біовугілля була меншою, але суттєвою, і становила 19,77-22,6%.
References: 

[1] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Yatsukh, K. Sewage Sludge as a Component to Create a Substrate for Biological Reclamation. Ecol. Eng. Environ. Technol. 2021, 22, 229–237. https://doi.org/10.12912/27197050/137863
[2] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Chornomaz, N.; Popovych, O.; Grechanik, R.; Symak, D. Review of the Global Experience in Reclamation of Disturbed Lands. Inzyn. Ekol. 2021, 22, 24–30. https://doi.org/10.12912/27197050/132097
[3] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248–263. https://doi.org/10.1504/IJFIP.2020.111239
[4] Vakal, V.; Pavlenko, I; Vakal, S.; Hurets, L.; Ochowiak, M. Mathematical Modeling of Nutrient Release from Capsulated Fertilizers. Period. Polytechn. Chemic. Engin. 2020, 64, 562–568. https://doi.org/10.3311/PPch.14100
[5] Gumnitski, Ya.M.; Luta, O.V. Molecular-Diffusion Mass Transfer of Substance in Soil Medium. Theor. Found. Chem. Engin. 2014, 48, 414–419.
[6] Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Atares, S.; García, C.; Zotarelli, L.; Bautista, S.; Vicente, O. Polymeric-Coated Nitrogen Fertilizer in Rice. Plants 2020, 9, 1183. https://doi.org/10.3390/plants9091183
[7] Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants (Basel) 2021, 1, 238. https://doi.org/10.3390/plants10020238
[8] Vakal, S.; Yanovska, A.; Vakal, V.; Artyukhov, A.; Shkola, V.; Yarova, T.; Dmitrikov, V; Krmela, J.; Malovanyy, M. Minimization of Soil Pollution as a Result of the Use of Encapsulated Mineral Fertilizers. J. Ecol. Eng. 2020, 22, 221–230. https://doi.org/10.12911/22998993/128965
[9] Vakal, S.; Vakal, V.; Artyukhov, A.; Shkola, V.; Yanovska, A. New Method for Obtaining “Green” Encapsulated Fertilizers with Nanoporous Structure within the Concept of Sustainable Development. Clean. Techn. Environ. Policy 2023, 25, 963–977. https://doi.org/10.1007/s10098-022-02419-6
[10] Marinov, I.; Marinov, A.M. A Coupled Mathematical Model to Predict the Influence of Nitrogen Fertilization on Crop, Soil and Groundwater Quality. Water Resource Manag. 2015, 28, 5231–5246. https://doi.org/10.1007/s11269-014-0664-5
[11] Ptashnyk, V.; Bordun, I.; Malovanyy, M.; Chabecki, P.; Pieshkov, T. The Change of Structural Parameters of Nanoporous Activated Carbons under the Influence of Ultrasonic Radiation. Appl. Nanosci. 2020, 10, 4891–4899. https://doi.org/10.1007/s13204-020-01393-z
[12] Nahurskyi, N.; Malovanyy, M.; Bordun, I.; Szymczykiewicz, E. Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review. Chem. Chem. Technol. 2024, 18, 170–187. https://doi.org/10.23939/chcht18.02.170
[13] Kochubei, V.; Yaremchuk, Y.; Malovanyy, M.; Yaholnyk, S.; Slyuzar, A. Perspectives of Treatment of Water Environments from Pollutants with Ultrasound-Activated Bentonites. Chem. Chem. Technol. 2023, 17, 870–877. http://doi.org/10.23939/chcht17.04.870
[14] Miroshnichenko, D.; Shmeltser, K.; Kormer, M.; Sahalai, D.; Pyshyev, S.; Kukhar, O.; Korchak, B.; Chervinskyy T. Influence of Raw Materials and Technological Factors on the Sorption Properties of Blast-Fuel Coke. ChemEngineering 2024, 8, 30. https://doi.org/10.3390/chemengineering8020030
[15] Miroshnichenko, D.; Zhylina, М.; Shmeltser, К. Modern Use of Biochar in Various Technologies and Industries. A Review. Chem. Chem. Technol. 2024, 18, 232–243. https://doi.org/10.23939/chcht18.02.232
[16] Sinitsyna, A.O.; Karnozhitskiy, P.V.; Miroshnichenko, D.V.; Bilets, D.Yu. The Use of Brown Coal in Ukraine to Obtain Water-Soluble Sorbents. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 4, 5–10. https://doi.org/10.33271/nvngu/2022-4/005
[17] Miroshnichenko, D.; Malik, I.K. Prediction of the Higher Heats of Combustion of Plant Raw Materials Based on the Ultimate Analysis Data. Solid Fuel Chem. 2021, 55, 216–222. https://doi.org/10.3103/S0361521921040054
[18] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
[19] Soloviy, Ch.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, Magnetic and Adsorption Characteristics of Magnetically Susceptible Carbon Sorbents Based on Natural Raw Materials. Journl of Water and Land Devel. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
[20] Kochubei, V.; Yaholnyk, S.; Bets, M.; Malovanyy, M. Use of Activated Clinoptilolite for Direct Dye-Contained Wastewater Treatment. Chem. Chem. Technol. 2020, 14, 386–393. https://doi.org/10.23939/chcht14.03.386
[21] Aragão de Figueredo, N.; Marciano da Costa, L.; Azevedo Melo, C.L.; Siebeneichlerd, E. A.; Tronto, J. Characterization of Biochars from Different Sources and Evaluation of Release of Nutrients and Contaminants. Revista Ciência Agronômica 2017, 48, 395–403. https://doi.org/10.5935/1806-6690.20170046
[22] Khan, T.F.; Salma, M.U.; Hossain, S.A. Impacts of Different Sources of Biochar on Plant Growth Characteristics. Am. J. Plant Sci. 2018, 9, 1922–1934. https://doi.org/10.4236/ajps.2018.99139
[23] Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Сlean. Prod., 2019, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
[24] Qambrani, N.A.; Rahman, M.M.; Won, S.; Shim, S.; Ra, C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renew. Sustain. Energ. Reviews 2017, 79, 255–273. https://doi.org/10.1016/j.rser.2017.05.057