Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Механіко-хімічні дослідження композитів al2o3-ti для їх застосування як кісткового замістника

Elizabeth Refugio-García1, Gerardo Vázquez-Huerta1, José Miranda-Hernández2, Jessica Osorio-Ramos1, José Rodríguez-García3, Enrique Rocha-Rangel3 (pp 591-598)
Affiliation: 
1 Materials Department, Universidad Autónoma Metropolitana, Avenida San Pablo 180, Col. Reynosa-Tamaulipas, CDMX, 02200, México 2 Industrial Materials Research and Development Laboratory, Universidad Autónoma del Estado de México, Centro Universitario UAEM Valle de México, Atizapán de Zaragoza, Estado de México, 54500, México 3 Manufacture Department, Universidad Politécnica de Victoria, Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas, 87138, México erochar@upv.edu.mx
DOI: 
https://doi.org/10.23939/chcht15.04.591
AttachmentSize
PDF icon full_text.pdf3.93 MB
Abstract: 
Порошковими методами синтезовані композити на основі глинозему, зміцнені титаном. Показано, що вміст титану впливає на ущільнення, що в свою чергу позитивно впливає на твердість та в'язкість. Мікроструктурним аналізом встановлено, що зерна мають неправильну форму та невеликі розміри. За допомогою спектроскопії електрохімічного імпедансу визначено, що додатки титану до Al2O3 підвищують його корозійну стійкість.
References: 

[1] Daguano J., Santos C., Souza R. et al.: Int. J. Refract. Met. H., 2007, 25, 374. https://doi.org/10.1016/j.ijrmhm.2006.12.005
[2] Wu Y., Zhang Y., Huang X., Guo J.: J. Eur. Ceram. Soc., 2001, 21, 581. https://doi.org/10.1016/S0955-2219(00)00245-4
[3] Wang L., Shi J., Hua Z. et al.: Mater. Lett., 2001, 50, 179. https://doi.org/10.1016/S0167-577X(01)00221-X
[4] Miyazaki H., Yoshizawa Y., Hirao K.: Mater. Lett., 2004, 58, 1410. https://doi.org/10.1016/j.matlet.2003.09.037
[5] Liu C., J., Sun J., Zhang X.: Ceram. Int., 2007, 33, 1319. https://doi.org/10.1016/j.ceramint.2006.04.014
[6] Liu C., Zhang J., Sun J. et al.: Ceram. Int., 2007, 33, 1149. https://doi.org/10.1016/j.ceramint.2006.03.018
[7] Sekino T., Nakajima T., Niihara K.: Mater. Lett., 1996, 29, 165. https://doi.org/10.1016/S0167-577X(96)00136-X
[8] Konopka K., Maj M., Kurzydlowski K.: Mater. Charact., 2003, 51, 335. https://doi.org/10.1016/j.matchar.2004.02.002
[9] Chou W., Tuan W.: J. Eur. Ceram. Soc, 1995, 15, 291. https://doi.org/10.1016/0955-2219(95)90351-I
[10] Wu C., Wang Z., Li Q. et al.: J. Alloys Compd., 2014, 617, 729. https://doi.org/10.1016/j.jallcom.2014.08.007
[11] Mas-Guindal M., Benko E., Rodriguez M.: J. Alloys Compd., 2008, 454, 352. https://doi.org/10.1016/j.jallcom.2006.12.105
[12] Ji Y., Yeomans J.: J. Eur. Ceram. Soc., 2002, 22, 1927. https://doi.org/10.1016/S0955-2219(01)00528-3
[13] Lalande J., Scheppokat S., Janssen R., Claussen N.: J. Eur. Ceram. Soc, 2002, 22, 2165. https://doi.org/10.1016/S0955-2219(02)00031-6
[14] Yaoa X., Huanga Z., Chena L. et al.: Mater. Lett., 2005, 59, 2314. https://doi.org/10.1016/j.matlet.2005.03.012
[15] Guichard J., Tillement O., Mocellin A: J. Eur. Ceram. Soc., 1998, 18, 1143. https://doi.org/10.1016/S0955-2219(98)00009-0
[16] De Portu G., Guicciardi S., Melandri C., Monteverde F.: Wear, 2007, 262, 1346. https://doi.org/10.1016/j.wear.2007.01.010
[17] Yoshida K., Mishina H., Sasaki S. et al.: J. Jpn. I. Met., 2005, 69, 793. https://doi.org/10.2320/jinstmet.69.793
[18] Mishina H., Inumaru Y., Kaitoku K.: Mater. Sci. Eng. A, 2008, 475, 141. https://doi.org/10.1016/j.msea.2007.05.004
[19] Oshkour A., Pramanik S., Shirazi S. et al.: Sci. World J., 2014, 2014, 9. https://doi.org/10.1155/2014/616804
[20] Cook R., Zioupos P.: J. Biomech., 2009, 42, 2054. https://doi.org/10.1016/j.jbiomech.2009.06.001
[21] Norman T., Vashisth D., Burr D.: J. Biomech., 1995, 28, 309. https://doi.org/10.1016/0021-9290(94)00069-G
[22] ASTM B962-17: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle, Pensylvania, USA, 2017.
[23] ASTM C1421-18: Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, Pensylvania, USA, 2018.
[24] ASTM C1327-15: Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, Pensylvania, USA, 2015.
[25] ASTM E1876-15: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, Pensylvania, USA, 2015.
[26] Kutz M.: Standard Handbook of Biomedical Engineering and Design, McGraw-Hill, New York 2013.
[27] Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.: J. Nanosci. Nanotechnol., 2014, 14, 15. https://doi.org/10.1166/jnn.2014.9127
[28] Miyoshi T., Sagawa N., Sassa T.: Trans. Jpn. Soc. Mech. Eng. A, 1985, 51, 2489. https://doi.org/10.1299/kikaia.51.2489