Mechanical and Chemical Studies of Al2O3-Ti Composites for Their Use as a Bone Substitute

Elizabeth Refugio-García1, Gerardo Vázquez-Huerta1, José Miranda-Hernández2, Jessica Osorio-Ramos1, José Rodríguez-García3, Enrique Rocha-Rangel3 (pp 591-598)
Affiliation: 
1 Materials Department, Universidad Autónoma Metropolitana, Avenida San Pablo 180, Col. Reynosa-Tamaulipas, CDMX, 02200, México 2 Industrial Materials Research and Development Laboratory, Universidad Autónoma del Estado de México, Centro Universitario UAEM Valle de México, Atizapán de Zaragoza, Estado de México, 54500, México 3 Manufacture Department, Universidad Politécnica de Victoria, Av. Nuevas Tecnologías 5902, Parque Científico y Tecnológico de Tamaulipas, Ciudad Victoria, Tamaulipas, 87138, México erochar@upv.edu.mx
DOI: 
https://doi.org/10.23939/chcht15.04.591
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Alumina-based composites reinforced with titanium were manufactured by powder techniques. Characterizations indicate that titanium content affects densification which in turn causes positive effects on hardness and toughness. Microstructure presents grains of irregular shape and small sizes. Electrochemical impedance spectroscopy indicates that additions of titanium on Al2O3 enhance its corrosion resistance.
References: 

[1] Daguano J., Santos C., Souza R. et al.: Int. J. Refract. Met. H., 2007, 25, 374. https://doi.org/10.1016/j.ijrmhm.2006.12.005
https://doi.org/10.1016/j.ijrmhm.2006.12.005

[2] Wu Y., Zhang Y., Huang X., Guo J.: J. Eur. Ceram. Soc., 2001, 21, 581. https://doi.org/10.1016/S0955-2219(00)00245-4
https://doi.org/10.1016/S0955-2219(00)00245-4

[3] Wang L., Shi J., Hua Z. et al.: Mater. Lett., 2001, 50, 179. https://doi.org/10.1016/S0167-577X(01)00221-X
https://doi.org/10.1016/S0167-577X(01)00221-X

[4] Miyazaki H., Yoshizawa Y., Hirao K.: Mater. Lett., 2004, 58, 1410. https://doi.org/10.1016/j.matlet.2003.09.037
https://doi.org/10.1016/j.matlet.2003.09.037

[5] Liu C., J., Sun J., Zhang X.: Ceram. Int., 2007, 33, 1319. https://doi.org/10.1016/j.ceramint.2006.04.014
https://doi.org/10.1016/j.ceramint.2006.04.014

[6] Liu C., Zhang J., Sun J. et al.: Ceram. Int., 2007, 33, 1149. https://doi.org/10.1016/j.ceramint.2006.03.018
https://doi.org/10.1016/j.ceramint.2006.03.018

[7] Sekino T., Nakajima T., Niihara K.: Mater. Lett., 1996, 29, 165. https://doi.org/10.1016/S0167-577X(96)00136-X
https://doi.org/10.1016/S0167-577X(96)00136-X

[8] Konopka K., Maj M., Kurzydlowski K.: Mater. Charact., 2003, 51, 335. https://doi.org/10.1016/j.matchar.2004.02.002
https://doi.org/10.1016/j.matchar.2004.02.002

[9] Chou W., Tuan W.: J. Eur. Ceram. Soc, 1995, 15, 291. https://doi.org/10.1016/0955-2219(95)90351-I
https://doi.org/10.1016/0955-2219(95)90351-I

[10] Wu C., Wang Z., Li Q. et al.: J. Alloys Compd., 2014, 617, 729. https://doi.org/10.1016/j.jallcom.2014.08.007
https://doi.org/10.1016/j.jallcom.2014.08.007

[11] Mas-Guindal M., Benko E., Rodriguez M.: J. Alloys Compd., 2008, 454, 352. https://doi.org/10.1016/j.jallcom.2006.12.105
https://doi.org/10.1016/j.jallcom.2006.12.105

[12] Ji Y., Yeomans J.: J. Eur. Ceram. Soc., 2002, 22, 1927. https://doi.org/10.1016/S0955-2219(01)00528-3
https://doi.org/10.1016/S0955-2219(01)00528-3

[13] Lalande J., Scheppokat S., Janssen R., Claussen N.: J. Eur. Ceram. Soc, 2002, 22, 2165. https://doi.org/10.1016/S0955-2219(02)00031-6
https://doi.org/10.1016/S0955-2219(02)00031-6

[14] Yaoa X., Huanga Z., Chena L. et al.: Mater. Lett., 2005, 59, 2314. https://doi.org/10.1016/j.matlet.2005.03.012
https://doi.org/10.1016/j.matlet.2005.03.012

[15] Guichard J., Tillement O., Mocellin A: J. Eur. Ceram. Soc., 1998, 18, 1143. https://doi.org/10.1016/S0955-2219(98)00009-0
https://doi.org/10.1016/S0955-2219(98)00009-0

[16] De Portu G., Guicciardi S., Melandri C., Monteverde F.: Wear, 2007, 262, 1346. https://doi.org/10.1016/j.wear.2007.01.010
https://doi.org/10.1016/j.wear.2007.01.010

[17] Yoshida K., Mishina H., Sasaki S. et al.: J. Jpn. I. Met., 2005, 69, 793. https://doi.org/10.2320/jinstmet.69.793
https://doi.org/10.2320/jinstmet.69.793

[18] Mishina H., Inumaru Y., Kaitoku K.: Mater. Sci. Eng. A, 2008, 475, 141. https://doi.org/10.1016/j.msea.2007.05.004
https://doi.org/10.1016/j.msea.2007.05.004

[19] Oshkour A., Pramanik S., Shirazi S. et al.: Sci. World J., 2014, 2014, 9. https://doi.org/10.1155/2014/616804
https://doi.org/10.1155/2014/616804

[20] Cook R., Zioupos P.: J. Biomech., 2009, 42, 2054. https://doi.org/10.1016/j.jbiomech.2009.06.001
https://doi.org/10.1016/j.jbiomech.2009.06.001

[21] Norman T., Vashisth D., Burr D.: J. Biomech., 1995, 28, 309. https://doi.org/10.1016/0021-9290(94)00069-G
https://doi.org/10.1016/0021-9290(94)00069-G

[22] ASTM B962-17: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle, Pensylvania, USA, 2017.

[23] ASTM C1421-18: Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, Pensylvania, USA, 2018.

[24] ASTM C1327-15: Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics, Pensylvania, USA, 2015.

[25] ASTM E1876-15: Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and Poisson's Ratio by Impulse Excitation of Vibration, Pensylvania, USA, 2015.

[26] Kutz M.: Standard Handbook of Biomedical Engineering and Design, McGraw-Hill, New York 2013.

[27] Polo-Corrales L., Latorre-Esteves M., Ramirez-Vick J.: J. Nanosci. Nanotechnol., 2014, 14, 15. https://doi.org/10.1166/jnn.2014.9127
https://doi.org/10.1166/jnn.2014.9127

[28] Miyoshi T., Sagawa N., Sassa T.: Trans. Jpn. Soc. Mech. Eng. A, 1985, 51, 2489. https://doi.org/10.1299/kikaia.51.2489
https://doi.org/10.1299/kikaia.51.2489