Дослідження конверсії н-бутану на Pd, Rh, Ru каталізаторах на носіях Al2O3 and SiO2
Attachment | Size |
---|---|
full_text.pdf | 255.1 KB |
[1] Wang, T.; Li, G.; Cui, X.; Abild-Pedersen, F. Identification of Earth-Abundant Materials for Selective Dehydrogenation of Light Alkanes to Olefins. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2024666118. https://doi.org/10.1073/pnas.2024666118
[2] Natarajan, P.; Khan, H.; Yoon, S.; Jung, K. D. One-Pot Synthesis of Pt-Sn Bimetallic Mesoporous Alumina Catalysts with Worm-Like Pore Structure for n-Butane Dehydrogenation. J. Ind. Eng. Chem. 2018, 63, 380–390. https://doi.org/10.1016/j.jiec.2018.02.038
[3] Chu, M.; Liu, Y.; Gong, J.; Zhang, C.; Wang, X.; Zhong, Q.; Wu, L.; Xu, Y. Suppressing Dehydroisomerization Boosts n-Butane Dehydrogenation with High Butadiene Selectivity. Chem. 2021, 27, 11643–11648. https://doi.org/10.1002/chem.202101087
[4] Veldurthi, S.; Shin, C.; Joo, O.; Jung, K.-D. Promotional Effects of Cu on Pt/Al2O3 and Pd/Al2O3 Catalysts During n-Butane Dehydrogenation. Catal. Today, 2012, 185, 88–93. https://doi.org/10.1016/j.cattod.2011.11.021
[5] Rodrıguez, L.; Romero, D.; Rodriguez, D.; Sánchez, J.; Domínguez, F.; Arteaga, G. Dehydrogenation of n-Butane over Pd-Ga/Al2O3 Catalysts. Appl. Catal. A-Gen. 2010, 373, 66–70. https://doi.org/10.1016/j.apcata.2009.10.040
[6] Li, C.; Wang, G. Dehydrogenation of Light Alkanes to Mono-Olefins. Chem. Soc. Rev. 2021, 50, 4359–4381. https://doi.org/10.1039/d0cs00983k
[7] PGM Management. https://matthey.com/products-and-markets/pgms-and-circularity/pgm-manage... (Accessed Dec. 22, 2023).
[8] Nagaraja, B.; Shin, C.; Jung, K. Selective and Stable Bimetallic PtSn/θ-Al2O3 Catalyst for Dehydrogenation of n-Butane to n-Butenes. Appl. Catal. A-Gen. 2013, 467, 211–223. https://doi.org/10.1016/j.apcata.2013.07.022
[9] Pham, H. N.; Sattler, J. J.; Weckhuysen, B. M.; Datye, A. K. Role of Sn in the Regeneration of Pt/γ-Al2O3 Light Alkane Dehydrogenation Catalysts. ACS Catal. 2016, 6, 2257–2264. https://doi.org/10.1021/acscatal.5b02917
[10] Fedevych, O. Study on Heterogeneous Catalytic Oxidative Dehydrogenation of Isopropylbenzene to-Methylstyrene. Chem. Chem. Technol. 2022, 16, 507–514. https://doi.org/10.23939/chcht16.04.507
[11] Makido, O.; Khovanets, G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem. Chem. Technol. 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227
[12] Tanimu, G.; Jermy, B.; Asaoka, S.; Al-Khattaf, S. Composition Effect of Metal Species in (Ni, Fe, Co)-Bi-O/gamma-Al2O3 Catalyst on Oxidative Dehydrogenation of n-Butane to Butadiene. J. Ind. Eng. Chem. 2017, 45, 111–120. https://doi.org/10.1016/j.jiec.2016.09.013
[13] Zhu, Q.; Wang, G.; Zhang, H.; Zhu, X.; Li, C. n-Butane Dehydrogenation over Ni-Sn/SiO2: Adsorption Modes and Reaction Paths of n-Butane and 1-Butene. Appl. Catal. A-Gen. 2018, 566, 113–120. https://doi.org/10.1016/j.apcata.2018.08.016
[14] Deng, L.; Miura, H.; Shishido, T.; Wang, Zh.; Hosokawa, S.; Teramura, K.; Tanaka, T. Elucidating Strong Metal-Support Interactions in Pt-Sn/SiO2 Catalyst and its Consequences for Dehydrogenation of Lower Alkanes. J. Catal. 2018, 365, 277–291. https://doi.org/10.1016/j.jcat.2018.06.028
[15] Osterrieth, J.W.M.; Rampersad, J.; Madden, D.; Rampal, N.; Skoric, L.; Connolly, B.; Allendorf, M.D.; Stavila, V.; Snider, J.L.; Ameloot, R. et al. How Reproducible are Surface Areas Calculated from BET Equation? Adv. Mater. 2022, 34, e2201502. https://doi.org/10.1002/adma.202201502
[16] Quenel, J.; Anders, M.; Atakan, B. Propane-Isobutane Mixtures in Heat Pumps with Higher Temperature Lift: An Experimental Investigation. Therm. Sci. Eng. Prog. 2023, 42, 101907. https://doi.org/10.1016/j.tsep.2023.101907
[17] Ullah, Z.; Khan, M.; Khan, I.; Jamil, A.; Sikandar, U.; Mehran, M. T.; Mubashir, M.; Tham, P. E.; Khoo, K. S.; Show, P. L. Recent Progress in Oxidative Dehydrogenation of Alkane (C2–C4) to Alkenes in a Fluidized Bed Reactor under Mixed Metallic Oxide Catalyst. J. Inorg. Organomet. Polym. Mater. 2022, 34, 1–13. https://doi.org/10.1007/s10904-022-02433-7
[18] Gao, Y.; Wang, X.; Corolla, N.; Eldred, T.; Bose, A.; Gao, W.; Li, F. Alkali Metal Halide-Coated Perovskite Redox Catalysts for Anaerobic Oxidative Dehydrogenation of n-Butane. Sci. Adv. 2022, 8, eabo7343. https://doi.org/10.1126/sciadv.abo7343
[19] Kopač, D.; Jurković, D. L.; Likozar, B.; Huš, M. First-principles-based Multiscale Modelling of Nonoxidative Butane Dehydrogenation on Cr2O3 (0001). ACS Catal. 2020, 10, 14732–14746. https://doi.org/10.1021/acscatal.0c03197
[20] Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E.C.H. Single-atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts. Acc. Chem. Res. 2019, 52, 237–247. https://doi.org/10.1021/acs.accounts.8b00490
[21] Wolf, M.; Raman, N.; Taccardi, N.; Haumann, M.; Wasserscheid, P. Coke Formation during Propane Dehydrogenation over Ga-Rh Supported Catalytically Active Liquid Metal Solutions. ChemCatChem. 2020, 12, 1085–1094. https://doi.org/10.1002/cctc.201901922
[22] Du, B.; Chen, X.; Ling, Y.; Niu, T.; Guan, W.; Meng, J.; Hu, H.; Tsang, C. W.; Liang, C. Hydrogenolysis-Isomerization of Waste Polyolefin Plastics to Multibranched Liquid Alkanes. ChemSusChem. 2023, 16, e202202035. https://doi.org/10.1002/cssc.202202035