Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Адсорбційні властивості гідрофобних пористих координаційних полімерів цинк-оксалатної кислоти з лігандами суміші триазолу й амінотриазолу

Moondra Zubir1,2, Zainuddin Muchtar1, Jasmidi Jasmidi1, Rini Selly1, Siti Rahmah1,3, Putri Faradilla1, Dikki Miswanda4
Affiliation: 
1 Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, North Sumatera, Indonesia 2 Chemistry Department, Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan 3 Chemical Engineering Department, faculty of Engineering, Tohoku University, Sendai Miyagi, Japan 4 Mechanical Engineering Department, Politeknik Negeri Medan, Medan, North Sumatera, Indonesia moondrazubir@unimed.ac.id
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Пористі координаційні полімери одержано з Zn2+ та оксалатної кислоти з 2 лінкерними лігандами - 1,2,4-триазолом (Taz) та 3-аміно-1,2,4-триазолом (ATaz). Адсорбція N2 після адсорбції дегазованого СО2 в пористій структурі зростає в 3 рази. Гнучкість цієї структури зумовлена взаємодією молекул СО2 з амінними групами, що містяться в ній, завдяки чому збільшується її пористість.
References: 

[1] Brostow, W.; Lobland, H.E.H.; Hamad, N.A. Dependence of Linear Isobaric Thermal Expansivity of Polymers on Their Flexibility. Chem. Chem. Technol. 2023, 17, 796–799. https://doi.org/10.23939/chcht17.04.796
[2] Kiose, T.; Rakitskaya, T.; Ennan, A.; Vasylechko, V.; Gryshchouk, H. Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide. Chem. Chem. Technol. 2024, 17, 272–278. https://doi.org/10.23939/chcht17.02.272
[3] Lin, L.C.; Kim, J.; Kong, Scott, X.E.; McDonald, T.M.; Long, J.R.; Reimer, J.A.; Smit, B. Understanding CO2 Dynamics in Metal−Organic Frameworks with Open Metal Sites. Angew. Chem., Int. Ed. 2013, 52, 4410−4413. https://doi.org/10.1002/anie.201300446
[4] Kitagawa, S; Kitaura, R.; Noro, R. Functional Porous Coordination Polymers. Angew. Chem. Int.Ed. 2014, 43, 2334–2375. https://doi.org/10.1002/anie.200300610
[5] Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O'keeffe, M.; Yaghi, O.M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127–1129. https://doi.org/10.1126/science.1083440
[6] Onishi, S.; Ohmori, T.; Ohkubo, T.; Noguchi, H.; Di, L.; Hanzawa, Y.; Kanoh, H.; Kaneko, K. Hydrogen-Bond Change-Associated Gas Adsorption in Inorganic−Organic Hybrid Microporous Crystals. Appl.Surf. Sci. 2002, 196, 81−88. https://doi.org/10.1016/S0169-4332(02)00048-X
[7] Millward, A.R.; Yaghi, O.M. Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide At Room Temperature. J. Am. Chem. Soc. 2005, 127, 17998−17999. https://doi.org/10.1021/ja0570032
[8] Garcia-Ricard, O.J.; Meza-Morales, P.; Silvia-Martinez, J.C.; Curet-Arana, M.C.; Hogan, J.A.; Hernandez-Maldonado, A.J. Carbondioxide Storage and Sustained Delivery by Cu2(pzdc)2L [L = dipyridyl based ligand] Pillared-Layer Porous Coordination Networks. Microporous Mesoporous Mater 2013, 177, 54−58. https://doi.org/10.1016/j.micromeso.2013.04.018
[9] Arstad B., Fjellvag H., Kongshaug K.O., Swang, O.; Blom, R. Amine Functionalised Metal Organic Frameworks (MOFs) as Adsorbents for Carbon Dioxide. Adsorption 2008, 14, 755–762. https://link.springer.com/article/10.1007/s10450-008-9137-6
[10] Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki K. Three-Dimensional Frameworks with Channeling Cavities for Small Molecules: {[M2(4,4′-bpy)3(NO3)4]•xH2O}n (M = Co, Ni, Zn). Angew. Chem., Int. Ed. Engl. 1997, 36, 1725−1777. https://doi.org/10.1002/anie.199717251
[11] Eddaoudi, M.; Kim, J.; Rosi, N.L.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and their Application in Methane Storage. Science 2002, 295, 469–472. https://doi.org/10.1126/science.1067208.
[12] Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279. https://doi.org/10.1038/46248
[13] Garcıa-Perez, P.; Serra-Crespo, P.; Hamad, S.; Kaptejin, F.; Gascon, J. Molecular Simulation of Gas Adsorption and Diffusioning a Breathing MOF Using a Rigid Force Field. Phys.Chem.Chem.Phys. 2014, 16, 16060—16066. https://doi.org/10.1039/C3CP55416C
[14] Li, W.; Jia, H.P.; Ju, Z.F.; Zhang, J. Novel Chiral Cd(II) Coordination Polymer Based on Achiral Unsymmetrical 3-Amino-1,2,4-triazole with an Unprecedented μ4-Bridging Mode. Cryst. Growth Des. 2006, 6, 2136−2140. https://doi.org/10.1021/cg060363w
[15] Soury, S.; Bahrami, A.; Alizadeh, S.; Shahna, F.G,; Nematollahi, D. Development of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air. Chem. Chem. Technol. 2022, 16, 314–327. https://doi.org/10.23939/chcht16.02.314
[16] Noro, S.; Kitagawa, S.; Akutagawa, T.; Nakamura, T. Coordination Polymers Constructed from Transition Metal Ions Andorganic N-containing Heterocyclic Ligands: Crystal Structures and Microporous Properties. Prog. Polym. Sci. 2009, 34, 240−279. https://doi.org/10.1016/j.progpolymsci.2008.09.002
[17] Li, J.R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J. Jeong, H.K.; Balbuena, P.B.; Zhou, H.C. Carbon Dioxide Capture-Related Gas Adsorption and Separation in Metal-Organic Frameworks. Coord. Chem. Rev. 2011, 255, 1791−1823. https://doi.org/10.1016/j.ccr.2011.02.012
[18] Shimomura, S.; Horike, S.; Matsuda R.; Kitagawa, S. Guest Specific Function of a Flexible Undulating Channel in a 7,7,8,8-Tetracyano-p-quinodimethane Dimer-Based Porous Coordination Polymer. J. Am. Chem. Soc. 2007, 129, 10990−10991. https://doi.org/10.1021/ja073505z.
[19] Vaidhyanathan, R.; Iremonger, S.S.; Dawson, K.W.; Shimizu, G.K.H. An Amine-Functionalized Metal Organic Framework Forpreferential CO2 Adsorption at Low Pressures. Chem. Commun. 2009, 5230−5232. https://doi.org/10.1039/B911481E
[20] Zubir, M.; Hamasaki, A.; Iiyama, T. Micropore Formation of [Zn2(Oxac)(Taz)2]•(H2O)2.5 via CO2 Adsorption. Langmuir 2017, 33, 680−684. https://doi.org/10.1021/acs.langmuir.6b03456
[21] Zubir, M.; Hamasaki, A.; Iiyama, T. Magnetic Field Control of Micropore Formation in [Zn2(Oxac)(Taz)2]•(H2O)x. Chem. Lett. 2016, 45, 362−364. https://doi.org/10.1246/cl.151150
[22] Deng, H.; Doonan, C.J.; Furukawa. H.; Ferreira, R.B.; Towne, J.; Knobler, C.B.; Wang, B.; Yaghi, O.M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327, 846–850. https://doi.org/10.1126/science.1181761
[23] Cai, Y.; Zhang, Y.; Huang, Y.; Marder, S.R.; Walton, K.S. Impact of Alkyl-Functionalized BTC on Properties of Copper-BasedMetal−Organic Frameworks. Cryst. Growth Des. 2012, 12, 3709−3713. https://doi.org/10.1021/cg300518k
[24] Zubir, M.; Nasution, H.I.; Sudarma, T.F. The Role of Micropores and Amino Groups in Preferential CO2 Adsorptivity of Porous Zn-Coordination Polymers Comprising Mixed Ligands of Triazole and Amino Triazole. Orient. J. Chem. 2019, 35, 449–454. https://doi.org/10.13005/ojc/350158
[25] Couck, S.; Denayer, J.F.M.; Baron, G.V.; Remy, T.; Gascon, J.; Kapteijn, F. An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO2 and CH4. J. Am. Chem. Soc. 2009, 131, 6326–6327. https://doi.org/10.1021/ja900555r
[26] Banerjee, A.; Nandi, S.; Nasa, P.; Vaidhyanathan, R. Enhancing the Carbon Capture Capacities of a Rigid Ultra-Microporous MOF through Gate-Opening at Low CO2 Pressures Assisted by Swiveling Oxalate Pillars. Chem. Commun. 2016, 52, 1851−1854. https://doi.org/10.1039/C5CC08172F
[27] Zhai, Q.G.; Li, S.N.; Hu, M.C.; Jiang, Y.C. A Three-Dimensional Hybrid Framework Based on Novel [Co4Mo4] Bimetallic Oxide Clusters with 3,5-bis(3-Pyridyl)-1,2,4-triazole Ligands. Acta Cryst. 2009, C65, m128-m130. https://doi.org/10.1107/S0108270109003813
[28] Nguyen, K.D.; Tran, A.T.H.; Kaus, N.H.M. Preparation and Characterization of Red Mud-Basedgeopolymer Composited with Rice Husk Ash for the Adsorption of Bromocresol Green in Aqueous Solution. Chem. Chem. Technol. 2023, 17, 857–869. https://doi.org/10.23939/chcht17.04.857
[29] Itodo, A.U.; Itodo, H.U.; Gafar, M.K. Estimation of Specific Surface Area using Langmuir Isotherm Method. J. Appl. Sci. Environ. Manage 2011, 14, 141–145. https://doi.org/10.4314/jasem.v14i4.63287
[30] Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R.; Corriero, N.; Falcicchio, A. EXPO2013: A Kit of Tools for Phasingcrystal Structures from Powder Data. J. Appl. Crystallogr. 2013, 46, 1231−1235. https://doi.org/10.1107/S0021889813013113
[31] Said, R.B.; Kolle, J.M.; Essalah, K.; Tangour, B.; Sayari, A. A Unified Approach to CO2−Amine Reaction Mechanisms. ACS Omega 2020, 5, 26125−26133. https://doi.org/10.1021/acsomega.0c03727