Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Prediction of Higher Heating Value of Raw Materials and Biochar

Denis Miroshnichenko1,2, Valentine Koval2, Maryna Zhylina3,4, Nataliya Vytrykush5, Mariia Shved5, Mykhailo Miroshnychenko1, Hennadii Omelianchuk1, Serhiy Pyshyev5
Affiliation: 
1 National Technical University Kharkiv Polytechnic Institute, 2 Kirpychova St., Kharkiv 61000, Ukraine 2 State Enterprise "Ukrainian State Research Institute for Carbochemistry (SE “UKHIN), 7 Vesnina St., Kharkiv 61023, Ukraine 3 Riga Technical University, 3 Pulka St., Riga 1007, Latvia 4 Institute of Agricultural Resources and Economics, Talsu County, 3258, Latvia 5 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine dvmir79@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.02.354
AttachmentSize
PDF icon full_text.pdf1.2 MB
Abstract: 
One of the most essential characteristics of biochar (charcoal) is its higher heating value. The higher heating value for the dry ashless state of 35 samples of raw vegetable materials and charcoal was determined to establish the dependencies between the quality of the raw material and the produced biochar samples. Biochar production was carried out using modernized equipment under the patented technology. Mathematical and graphical dependencies of the experimental and calculated higher heating values for the vegetable raw materials to produce pyrolysis gas and charcoal were established. The results indicate the acceptability of the established dependencies and allow the conclusion about the possibility of predicting the higher calorific properties of plant raw materials and charcoal. The obtained data have considerable practical significance. The use of the results proposed by the authors will significantly improve the biowaste processing process in industry and increase the share of the circular economy.
References: 

[1] Cabinet of Ministers of Ukraine, Order No. 373 On the approval of the Energy Strategy of Ukraine for the period up to 2050, dated April 21, 2023; Kyiv. https://www.kmu.gov.ua/npas/pro-skhvalennia-enerhetychnoi-stratehii-ukra...

[2] Cabinet of Ministers of Ukraine, Order No. 761 On the approval of the National Renewable Energy Action Plan for the period up to 2030 and the plan of measures for its implementation, dated August 13, 2024; Kyiv. https://www.kmu.gov.ua/npas/pro-zatverdzhennia-natsionalnoho-planu-dii-z...

[3] Plachkova, S.G.; Plachkov, I.V.; Dunaevska, N.I.; Podgurenko, V.S.; Shilyaev, B.A.; Landau Y.O.; Sygal, I.Ya.; Danylko, G.D. Energy: history, modernity and future. Book 5. Electricity and environmental protection. Energy functioning in the modern world; Kyiv, 2013. http://energetika.in.ua/ua/books/book-1

[4] Rahimi, Z.; Anand, A.; Gautam, Sh. An Overview on Thermochemical Conversion and Potential Evaluation of Biofuels Derived from Agricultural Wastes. Energy Nexus 2022, 7, 100125. https://doi.org/10.1016/j.nexus.2022.100125
https://doi.org/10.1016/j.nexus.2022.100125

[5] Roni, M.S.; Chowdhury, S.; Mamun, S.; Marufuzzaman, M.; Lein, W.; Johnson, S. Biomass Co-Firing Technology with Policies, Challenges, and Opportunities: A Global Review. Renew. Sustain. Energy Rev. 2017, 78, 1089-1101. https://doi.org/10.1016/j.rser.2017.05.023
https://doi.org/10.1016/j.rser.2017.05.023

[6] Funke, A.; Ziegler, F. Hydrothermal Carbonization of Biomass: A Summary and Discussion of Chemical Mechanisms for Process Engineering. Biofuels Bioprod. Biorefining 2010, 4, 160-177. https://doi.org/10.1002/bbb.198
https://doi.org/10.1002/bbb.198

[7] Zhang, C.; Fang, J.; Chen, W.-H.; Kwon, E. E.; Zhang, Y. Effects of Water Washing and KOH Activation for Upgrading Microalgal Torrefied Biochar. Sci. Total Environ. 2024, 921, 171254. https://doi.org/10.1016/j.scitotenv.2024.171254
https://doi.org/10.1016/j.scitotenv.2024.171254

[8] Pambudi, S.; Jongyingcharoen, J.S.; Saechua, W. Thermochemical Treatment of Spent Coffee Grounds via Torrefaction: A Statistical Evidence of Biochar Properties Similarity between Inert and Oxidative Conditions. Results Eng. 2024, 21, 102012. https://doi.org/10.1016/j.rineng.2024.102012
https://doi.org/10.1016/j.rineng.2024.102012

[9] Su, G.; Jiang, P. Machine Learning Models for Predicting Biochar Properties from Lignocellulosic Biomass Torrefaction. Bioresour. Technol. 2024, 399, 130519. https://doi.org/10.1016/j.biortech.2024.130519
https://doi.org/10.1016/j.biortech.2024.130519

[10] Ngambia, A.; Mašek, O.; Erastova, V. Development of Biochar Molecular Models with Controlled Porosity. Biomass Bioenergy 2024, 184, 107199. https://doi.org/10.1016/j.biombioe.2024.107199
https://doi.org/10.1016/j.biombioe.2024.107199

[11] Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A Review of the Hydrothermal Carbonization of Biomass Waste for Hydrochar Formation: Process Conditions, Fundamentals, and Physicochemical Properties. Renew. Sustain. Energy Rev. 2018, 90, 223-247. https://doi.org/10.1016/j.rser.2018.03.071
https://doi.org/10.1016/j.rser.2018.03.071

[12] Khan, T.A.; Saud, A.S.; Jamari, S.S.; Rahim, M.H.A.; Park, J.-W.; Kim, H.-J. Hydrothermal Carbonization of Lignocellulosic Biomass for Carbon Rich Material Preparation: A Review. Biomass Bioenergy 2019, 130, 105384. https://doi.org/10.1016/j.biombioe.2019.105384
https://doi.org/10.1016/j.biombioe.2019.105384

[13] Gan, Z.; Zhuang, X.; Cen, K.; Ba, Y.; Zhou, J.; Chen, D. Co-Pyrolysis of Municipal Solid Waste and Rice Husk Gasification Tar to Prepare Biochar: An Optimization Study Using Response Surface Methodology. Fuel 2024, 330, 125574. https://doi.org/10.1016/j.fuel.2022.125574
https://doi.org/10.1016/j.fuel.2022.125574

[14] Ni, L.; Feng, Z.; Zhang, T.; Gao, Q.; Hou, Y.; He, Y.; Su, M.; Ren, H.; Hu, W.; Liu, Z. Effect of Pyrolysis Heating Rates on Fuel Properties of Molded Charcoal: Imitating Industrial Pyrolysis Process. Renew. Energy 2022, 197, 257-267. https://doi.org/10.1016/j.renene.2022.07.132
https://doi.org/10.1016/j.renene.2022.07.132

[15] Durango Padilla, E.R.; Santiago Hansted, F.A.; Romero Luna, C.M.; Campos, C.I.; Yamaji, F.M. Biochar Derived from Agricultural Waste and its Application as Energy Source in Blast Furnace. Renew. Energy 2024, 220, 119688. https://doi.org/10.1016/j.renene.2023.119688
https://doi.org/10.1016/j.renene.2023.119688

[16] Daba, B.J.; Hailegiorgis, S M. Torrefaction of Corncob and Khat Stem Biomass to Enhance the Energy Content of the Solid Biomass and Parametric Optimization. Bioresour. Technol. Rep. 2023, 21, 101381. https://doi.org/10.1016/j.biteb.2023.101381
https://doi.org/10.1016/j.biteb.2023.101381

[17] Kaya, E.Y.; Ali, I.; Ceylan, Z.; Ceylan, S. Prediction of Higher Heating Value of Hydrochars Using Bayesian Optimization Tuned Gaussian Process Regression Based on Biomass Characteristics and Process Conditions. Biomass Bioenergy 2024, 180, 106993. https://doi.org/10.1016/j.biombioe.2023.106993
https://doi.org/10.1016/j.biombioe.2023.106993

[18] Wang, M.; Xie, Y.; Gao, Y.; Huang, X.; Chen, W. Machine Learning Prediction of Higher Heating Value of Biochar Based on Biomass Characteristics and Pyrolysis Conditions. Bioresour. Technol. 2024, 395, 130364. https://doi.org/10.1016/j.biortech.2024.130364
https://doi.org/10.1016/j.biortech.2024.130364

[19] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A. B.; Hassan, N.; El Rasoul, A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2020, 15, 61-73. https://ena.lpnu.ua/handle/ntb/60707
https://doi.org/10.23939/chcht15.01.061

[20] Hu, B.; Wang, K.; Wu, L.; Yu, S.-H.; Antonietti, M.; Titirici, M.-M. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Adv. Mater. 2010, 22, 813-828. https://doi.org/10.1002/adma.200902812
https://doi.org/10.1002/adma.200902812

[21] Malik, I.; Miroshnichenko, D.; Contreras, A. B.; Hassan, N.; El Rasoul, A. Prediction of the Higher Heating Value of Charcoal. Petrol. Coal 2022, 64, 100-105. https://www.vurup.sk/wp-content/uploads/2022/05/PC-X_Miroshnichenko_121.pdf

[22] Kambo, H.S.; Dutta, A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015, 45, 359-378. https://doi.org/10.1016/j.rser.2015.01.050
https://doi.org/10.1016/j.rser.2015.01.050

[23] Reza, M.T.; Andert, J.; Wirth, B.; Busch, D.; Pielert, J.; Lynam, J.G.; Mumme, J. Hydrothermal Carbonization of Biomass for Energy and Crop Production. Appl. Bioenergy, 2014, 1, 11-29. https://doi.org/10.2478/apbi-2014-0001
https://doi.org/10.2478/apbi-2014-0001

[24] Libra, J.A.; Ro, K.S.; Kammann, C.; Funke, A.; Berge, N.D.; Neubauer, Y.; Titirici, M.-M.; Fühner, C.; Bens, O.; Kern, J.; Emmerich, K.-H. Hydrothermal Carbonization of Biomass Residuals: A Comparative Review of the Chemistry, Processes and Applications of Wet and Dry Pyrolysis. Biofuels 2014, 2, 71-106. https://doi.org/10.4155/bfs.10.81
https://doi.org/10.4155/bfs.10.81

[25] Malik, І.K.; Installation for continuous thermal processing of plant raw materials. Industrial property. 133566, 2019.

[26] Ahmaruzzaman, M. Proximate Analyses and Predicting HHV of Chars Obtained from Cocracking of Petroleum Vacuum Residue with Coal, Plastics and Biomass. Bioresour. Technol. 2008, 99, 5043-5050. https://doi.org/10.1016/j.biortech.2007.09.021
https://doi.org/10.1016/j.biortech.2007.09.021

[27] Parikh, J.; Channiwala, S.A.; Chosal, G.K. A Correlation for Calculating HHV from Proximate Analysis of Solid Fuels. Fuel 2005, 84, 487-494. https://doi.org/10.1016/j.fuel.2004.10.010
https://doi.org/10.1016/j.fuel.2004.10.010

[28] Cordero, T.; Marquez, F.; Rodriquez-Marasol, J.; Rodriguez, J.J. Predicting Heating Values of Lignocellulosic and Carbonaceous Materials from Proximate Analysis. Fuel 2001, 80, 1567-1571. https://doi.org/10.1016/S0016-2361(01)00034-5
https://doi.org/10.1016/S0016-2361(01)00034-5

[29] Jimenez, L.; Gonzalez, F. Study of the Physical and Chemical Properties of Lignocellulosic Residues with a View to the Production of Fuels. Fuel 1991, 70, 947-950. https://doi.org/10.1016/0016-2361(91)90049-G
https://doi.org/10.1016/0016-2361(91)90049-G

[30] Han, J.; Yao, X.; Zhan, Y.; Oh, S.-Y.; Kim, L.-H.; Kim, H.-J. A Method for Estimating Higher Heating Value of Biomass-Plastic Fuel. J. Energy Inst. 2017, 90, 331-335. https://doi.org/10.1016/j.joei.2016.01.001
https://doi.org/10.1016/j.joei.2016.01.001

[31] Noushabadi, A.S.; Dashti, A.; Ahmadijokani, F.; Hu, J.; Mohammadi, A.H. Estimation of Higher Heating Values (HHVs) of Biomass Fuels Based on Ultimate Analysis Using Machine Learning Techniques and Improved Equation. Renew. Energy 2021, 179, 550-562. https://doi.org/10.1016/j.renene.2021.07.003
https://doi.org/10.1016/j.renene.2021.07.003

[32] Telmo, C.; Lousada, J. The Explained Variation by Lignin and Extractive Contents on Higher Heating Value of Wood. Biomass Bioenergy 2011, 35, 1663-1667. https://doi.org/10.1016/j.biombioe.2010.12.038
https://doi.org/10.1016/j.biombioe.2010.12.038