Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation
Attachment | Size |
---|---|
full_text.pdf | 1.07 MB |
[1] Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Res. 2008, 42, 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015
https://doi.org/10.1016/j.watres.2008.08.015
[2] Velichenko, A.; Knysh, V.; Luk'yanenko, T.V.; Dmitrikova, L.; Velichenko, Y.; Devilliers, D. PbO2 Based Composite Materials Deposited from Suspension Electrolytes: Electrosynthesis, Physico-Chemical and Electrochemical Properties. Chem. Chem. Technol. 2012, 6, 123-133. https://doi.org/10.23939/chcht06.02.123
https://doi.org/10.23939/chcht06.02.123
[3] Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
https://doi.org/10.1016/j.watres.2012.09.058
[4] Wafiroh, S.; Abdulloh, A.; Widati, A.A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by TiO2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291-298. https://doi.org/10.23939/chcht15.02.291
https://doi.org/10.23939/chcht15.02.291
[5] Maeda, K. Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments. J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 237-268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001
https://doi.org/10.1016/j.jphotochemrev.2011.07.001
[6] Ameen, S.; Akhtar, M.S.; Seo, H.-K.; Shin, H.-S. Solution-Processed CeO2/TiO2 Nanocomposite as Potent Visible Light Photocatalyst for the Degradation of Bromophenol Dye. Chem. Eng. J. 2014, 247, 193-198. https://doi.org/10.1016/j.cej.2014.02.104
https://doi.org/10.1016/j.cej.2014.02.104
[7] White, J.L.; Baruch, M.F.; Pander III, J.E.; Hu, Y.; Fortmeyer, I.C.; Park, J.E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chem. Rev. 2015, 115, 12888-12935. https://doi.org/10.1021/acs.chemrev.5b00370
https://doi.org/10.1021/acs.chemrev.5b00370
[8] Tahir, B.; Tahir, M.; Amin, N.A.S. Photo-Induced CO2 Reduction by CH4/H2O to Fuels over Cu-Modified g-C3N4 Nanorods Under Simulated Solar Energy. Appl. Surf. Sci. 2017, 419, 875-885. https://doi.org/10.1016/j.apsusc.2017.05.117
https://doi.org/10.1016/j.apsusc.2017.05.117
[9] Malengreaux, C.M.; Pirard, S.L.; Léonard, G.; Mahy, J.G.; Herlitschke, M.; Klobes, B.; Hermann, R.; Heinrichs, B.; Bartlett, J.R. Study of the Photocatalytic Activity of Fe3+, Cr3+, La3+ and Eu3+ Single-Doped and co-Doped TiO2 Catalysts Produced by Aqueous Sol-Gel Processing. J. Alloys Compd. 2017, 691, 726-738. https://doi.org/10.1016/j.jallcom.2016.08.211
https://doi.org/10.1016/j.jallcom.2016.08.211
[10] Lin, H.-Y.; Shih, C.-Y. Efficient One-Pot Microwave-Assisted Hydrothermal Synthesis of M (M= Cr, Ni, Cu, Nb) and Nitrogen co-Doped TiO2 for Hydrogen Production by Photocatalytic Water Splitting. J. Mol. Catal. A Chem. 2016, 411, 128-137. https://doi.org/10.1016/j.molcata.2015.10.026
https://doi.org/10.1016/j.molcata.2015.10.026
[11] Lei, J.; Chen, Y.; Shen, F.; Wang, L.; Liu, Y.; Zhang, J. Surface Modification of TiO2 with g-C3N4 for Enhanced UV and Visible Photocatalytic Activity. J. Alloys Compd. 2015, 631, 328-334. https://doi.org/10.1016/j.jallcom.2015.01.080
https://doi.org/10.1016/j.jallcom.2015.01.080
[12] Kumar, S.G.; Rao, K.S.R.K. Comparison of Modification Strategies towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124-148. https://doi.org/10.1016/j.apsusc.2016.07.081
https://doi.org/10.1016/j.apsusc.2016.07.081
[13] Shi, J.; Chen, J.; Feng, Z.; Chen, T.; Lian, Y.; Wang, X.; Li, C. Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture. J. Phys. Chem. C 2007, 111, 693-699. https://doi.org/10.1021/jp065744z
https://doi.org/10.1021/jp065744z
[14] Xia, T.; Zhang, Y.; Murowchick, J.; Chen, X. Vacuum-Treated Titanium Dioxide Nanocrystals: Optical Properties, Surface Disorder, Oxygen Vacancy, and Photocatalytic Activities. Catal. Today 2014, 225, 2-9. https://doi.org/10.1016/j.cattod.2013.08.026
https://doi.org/10.1016/j.cattod.2013.08.026
[15] Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Lett. 2012, 12, 1690-1696. https://doi.org/10.1021/nl300173j
https://doi.org/10.1021/nl300173j
[16] Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311
https://doi.org/10.23939/chcht04.04.311
[17] Yuan, Z.; Xiao-Xuan, W.; Lv, H.; Zheng, W.-C. EPR Parameters and Defect Structures of the off-Center Ti3+ Ion on the Sr2+ Site in Neutron-Irradiated SrTiO3 Crystal. J. Phys. Chem. Solids 2007, 68, 1652-1655. https://doi.org/10.1016/j.jpcs.2007.04.001
https://doi.org/10.1016/j.jpcs.2007.04.001
[18] Bityurin, N.; Kuznetsov, A.I.; Kanaev, A. Kinetics of UV-Induced Darkening of Titanium-Oxide Gels. Appl. Surf. Sci. 2005, 248, 86-90. https://doi.org/10.1016/j.apsusc.2005.03.083
https://doi.org/10.1016/j.apsusc.2005.03.083
[19] Jenkins, C.A.; Murphy, D.M. Thermal and Photoreactivity of TiO2 at the Gas−Solid Interface with Aliphatic and Aromatic Aldehydes. J. Phys. Chem. B 1999, 103, 1019-1026. https://doi.org/10.1021/jp982690n
https://doi.org/10.1021/jp982690n
[20] Coronel, S.; Pauker, C.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161
https://doi.org/10.23939/chcht14.02.161
[21] Qiu, S.; Kalita, S.J. Synthesis, Processing and Characterization of Nanocrystalline Titanium Dioxide. Mater. Sci. Eng. A 2006, 435-436, 327-332. https://doi.org/10.1016/j.msea.2006.07.062
https://doi.org/10.1016/j.msea.2006.07.062
[22] Liu, N.; Häublein, V.; Zhou, X.; Venkatesan, U.; Hartmann, M.; Mačković, M.; Nakajima, T.; Spiecker, E.; Osvet, A.; Frey, L.; Schmuki, P. "Black" TiO2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal-co-Catalyst Free Photocatalytic H2-Evolution. Nano Lett. 2015, 15, 6815-6820. https://doi.org/10.1021/acs.nanolett.5b02663
https://doi.org/10.1021/acs.nanolett.5b02663
[23] Ullattil, S.G.; Periyat, P. A 'One Pot'Gel Combustion Strategy towards Ti3+ Self-Doped 'Black'Anatase TiO2−x Solar Photocatalyst. J. Mater. Chem. A 2016, 4, 5854-5858. https://doi.org/10.1039/C6TA01993E
https://doi.org/10.1039/C6TA01993E
[24] Moore, D.M.; Reynolds, R.C., Jr. X-Ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford university press: Oxford, 1989.
[25] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degradation of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Technol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265
https://doi.org/10.23939/chcht04.04.265
[26] Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of Heterostructured g-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405-14414. https://doi.org/10.1021/am503674e
https://doi.org/10.1021/am503674e
[27] Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. et al. Visible-Light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-Reduced Black Titania. Energy Environ. Sci. 2013, 6, 3007-3014. https://doi.org/10.1039/C3EE41817K
https://doi.org/10.1039/c3ee41817k
[28] Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T. Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation. J. Phys. Chem. C 2016, 120, 6467-6474. https://doi.org/10.1021/acs.jpcc.6b01481
https://doi.org/10.1021/acs.jpcc.6b01481
[29] Zheng, J.; Liu, L.; Ji, G.; Yang, Q.; Zheng, L.; Zhang, J. Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size-Reactivity Correlation. ACS Appl. Mater. Interfaces 2016, 8, 20074-20081. https://doi.org/10.1021/acsami.6b05993
https://doi.org/10.1021/acsami.6b05993
[30] Schwarzbauer, J.; Heim, S. Lipophilic Organic Contaminants in the Rhine River, Germany. Water Res. 2005, 39, 4735-4748. https://doi.org/10.1016/j.watres.2005.09.029
https://doi.org/10.1016/j.watres.2005.09.029
[31] Parveen, B. Room-Temperature Ferromagnetism in Ni-doped TiO2 Diluted Magnetic Semiconductor Thin Films. J. Appl. Res. Technol. 2019, 15, 132-139. https://doi.org/10.1016/j.jart.2017.01.009
https://doi.org/10.1016/j.jart.2017.01.009
[32] Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing Solar Cell Efficiency: the Search for Luminescent Materials as Spectral Converters. Chem. Soc. Rev. 2013, 42, 173-201. https://doi.org/10.1039/C2CS35288E
https://doi.org/10.1039/C2CS35288E
[33] Qamar, M.; Muneer, M.; Bahnemann, D. Heterogeneous Photocatalysed Degradation of Two Selected Pesticide Derivatives, Triclopyr and Daminozid in Aqueous Suspensions of Titanium Dioxide. J. Environ. Manage. 2006, 80, 99-106. https://doi.org/10.1016/j.jenvman.2005.09.002
https://doi.org/10.1016/j.jenvman.2005.09.002
[34] Park, N.-G.; Van de Lagemaat, J.; Frank, A.J. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. J. Phys. Chem. B 2000, 104, 8989-8994. https://doi.org/10.1021/jp994365l
https://doi.org/10.1021/jp994365l