Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Photocatalytic Activity of Defective TiO2-x for Water Treatment/Methyl Orange Dye Degradation

Safaa H. Ali1, Saad S. Mohammed2, Mohsin E. Al-Dokheily2, Laith Algharagholy3
Affiliation: 
1 Department of Physiology and Chemistry, College of Veterinary Medicine, University of Thi-Qar, Al-Shatrah, Thi-Qar, Iraq 64007 2 Department of Chemistry, College of Science, University of Thi-Qar, Al-Nasriyah, Thi-Qar, Iraq 64002 3 Department of Physics, College of Science, University of Sumer, Al-Refaie, Thi-Qar, Iraq safaa.ali@utq.edu.iq
DOI: 
https://doi.org/10.23939/chcht16.04.639
AttachmentSize
PDF icon full_text.pdf1.07 MB
Abstract: 
This study is designed to highlight photocatalytic activity of TiO2 nanoparticles in methyl orange (MO) dye degradation. Titanium dioxide TiO2 nanopowder was synthesized by conventional sol-gel method and calcined in air atmosphere at different temperatures 350C, 550C and 850C. The prepared TiO2 nanoparticles then were subjected to a solid state reaction with calcium hydride (CaH2) at the same temperatures but calcined in argon atmosphere. X-Ray Diffraction (XRD) measurements used for phase and crystalline size identification showed that the obtained samples have the same TiO2 anatase phase, but the crystalline size decreased after reduction treatment. The electronic properties obtained via UV spectroscopy showed the decrease in calculated energy gap from 3.3 eV for prepared TiO2-550 to 2.65 eV for reduced TiO2-CaH2-550, which extend the absorption spectra toward visible light region. Energy dispersive spectroscopy (EDS) and scanning electron microscope (SEM) measurements revealed that the particle size decreased after reduction treatment similar to the XRD crystalline size. EDS results indicated that the deficient in oxygen content relates to formation oxygen vacancies responsible for nonstoichiometric TiO2-x oxides formation. The synthesized reduced TiO2 showed an excellent photo-catalytic activity in methyl orange dye degradation under optimum condition: pH 4.5, 40 mg catalyst loading and 10 ppm initial dye concentration.
References: 

[1] Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J.J. Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Res. 2008, 42, 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015
https://doi.org/10.1016/j.watres.2008.08.015

[2] Velichenko, A.; Knysh, V.; Luk'yanenko, T.V.; Dmitrikova, L.; Velichenko, Y.; Devilliers, D. PbO2 Based Composite Materials Deposited from Suspension Electrolytes: Electrosynthesis, Physico-Chemical and Electrochemical Properties. Chem. Chem. Technol. 2012, 6, 123-133. https://doi.org/10.23939/chcht06.02.123
https://doi.org/10.23939/chcht06.02.123

[3] Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
https://doi.org/10.1016/j.watres.2012.09.058

[4] Wafiroh, S.; Abdulloh, A.; Widati, A.A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by TiO2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291-298. https://doi.org/10.23939/chcht15.02.291
https://doi.org/10.23939/chcht15.02.291

[5] Maeda, K. Photocatalytic Water Splitting Using Semiconductor Particles: History and Recent Developments. J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 237-268. https://doi.org/10.1016/j.jphotochemrev.2011.07.001
https://doi.org/10.1016/j.jphotochemrev.2011.07.001

[6] Ameen, S.; Akhtar, M.S.; Seo, H.-K.; Shin, H.-S. Solution-Processed CeO2/TiO2 Nanocomposite as Potent Visible Light Photocatalyst for the Degradation of Bromophenol Dye. Chem. Eng. J. 2014, 247, 193-198. ‏https://doi.org/10.1016/j.cej.2014.02.104
https://doi.org/10.1016/j.cej.2014.02.104

[7] White, J.L.; Baruch, M.F.; Pander III, J.E.; Hu, Y.; Fortmeyer, I.C.; Park, J.E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chem. Rev. 2015, 115, 12888-12935.‏ https://doi.org/10.1021/acs.chemrev.5b00370
https://doi.org/10.1021/acs.chemrev.5b00370

[8] Tahir, B.; Tahir, M.; Amin, N.A.S. Photo-Induced CO2 Reduction by CH4/H2O to Fuels over Cu-Modified g-C3N4 Nanorods Under Simulated Solar Energy. Appl. Surf. Sci. 2017, 419, 875-885. https://doi.org/10.1016/j.apsusc.2017.05.117
https://doi.org/10.1016/j.apsusc.2017.05.117

[9] Malengreaux, C.M.; Pirard, S.L.; Léonard, G.; Mahy, J.G.; Herlitschke, M.; Klobes, B.; Hermann, R.; Heinrichs, B.; Bartlett, J.R. Study of the Photocatalytic Activity of Fe3+, Cr3+, La3+ and Eu3+ Single-Doped and co-Doped TiO2 Catalysts Produced by Aqueous Sol-Gel Processing. J. Alloys Compd. 2017, 691, 726-738.‏ https://doi.org/10.1016/j.jallcom.2016.08.211
https://doi.org/10.1016/j.jallcom.2016.08.211

[10] Lin, H.-Y.; Shih, C.-Y. Efficient One-Pot Microwave-Assisted Hydrothermal Synthesis of M (M= Cr, Ni, Cu, Nb) and Nitrogen co-Doped TiO2 for Hydrogen Production by Photocatalytic Water Splitting. J. Mol. Catal. A Chem. 2016, 411, 128-137. https://doi.org/10.1016/j.molcata.2015.10.026
https://doi.org/10.1016/j.molcata.2015.10.026

[11] Lei, J.; Chen, Y.; Shen, F.; Wang, L.; Liu, Y.; Zhang, J. Surface Modification of TiO2 with g-C3N4 for Enhanced UV and Visible Photocatalytic Activity. J. Alloys Compd. 2015, 631, 328-334.‏ https://doi.org/10.1016/j.jallcom.2015.01.080
https://doi.org/10.1016/j.jallcom.2015.01.080

[12] Kumar, S.G.; Rao, K.S.R.K. Comparison of Modification Strategies towards Enhanced Charge Carrier Separation and Photocatalytic Degradation Activity of Metal Oxide Semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 2017, 391, 124-148. https://doi.org/10.1016/j.apsusc.2016.07.081
https://doi.org/10.1016/j.apsusc.2016.07.081

[13] Shi, J.; Chen, J.; Feng, Z.; Chen, T.; Lian, Y.; Wang, X.; Li, C. Photoluminescence Characteristics of TiO2 and Their Relationship to the Photoassisted Reaction of Water/Methanol Mixture. J. Phys. Chem. C 2007, 111, 693-699. ‏https://doi.org/10.1021/jp065744z
https://doi.org/10.1021/jp065744z

[14] Xia, T.; Zhang, Y.; Murowchick, J.; Chen, X. Vacuum-Treated Titanium Dioxide Nanocrystals: Optical Properties, Surface Disorder, Oxygen Vacancy, and Photocatalytic Activities. Catal. Today 2014, 225, 2-9. ‏https://doi.org/10.1016/j.cattod.2013.08.026
https://doi.org/10.1016/j.cattod.2013.08.026

[15] Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Lett. 2012, 12, 1690-1696.‏ https://doi.org/10.1021/nl300173j
https://doi.org/10.1021/nl300173j

[16] Nikolenko, A.; Melnykov, B. Photocatalytic Oxidation of Formaldehyde Vapour Using Amorphous Titanium Dioxide. Chem. Chem. Technol. 2010, 4, 311-315. https://doi.org/10.23939/chcht04.04.311
https://doi.org/10.23939/chcht04.04.311

[17] Yuan, Z.; Xiao-Xuan, W.; Lv, H.; Zheng, W.-C. EPR Parameters and Defect Structures of the off-Center Ti3+ Ion on the Sr2+ Site in Neutron-Irradiated SrTiO3 Crystal. J. Phys. Chem. Solids 2007, 68, 1652-1655.‏ https://doi.org/10.1016/j.jpcs.2007.04.001
https://doi.org/10.1016/j.jpcs.2007.04.001

[18] Bityurin, N.; Kuznetsov, A.I.; Kanaev, A. Kinetics of UV-Induced Darkening of Titanium-Oxide Gels. Appl. Surf. Sci. 2005, 248, 86-90. https://doi.org/10.1016/j.apsusc.2005.03.083
https://doi.org/10.1016/j.apsusc.2005.03.083

[19] Jenkins, C.A.; Murphy, D.M. Thermal and Photoreactivity of TiO2 at the Gas−Solid Interface with Aliphatic and Aromatic Aldehydes. J. Phys. Chem. B 1999, 103, 1019-1026.‏ https://doi.org/10.1021/jp982690n
https://doi.org/10.1021/jp982690n

[20] Coronel, S.; Pauker, C.S.; Jentzsch, P.V.; de la Torre, E.; Endara, D.; Muñoz-Bisesti, F. Titanium Dioxide/Copper/Carbon Composites for the Photocatalytic Degradation of Phenol. Chem. Chem. Technol. 2020, 14, 161-168. https://doi.org/10.23939/chcht14.02.161
https://doi.org/10.23939/chcht14.02.161

[21] Qiu, S.; Kalita, S.J. Synthesis, Processing and Characterization of Nanocrystalline Titanium Dioxide. Mater. Sci. Eng. A 2006, 435-436, 327-332. ‏https://doi.org/10.1016/j.msea.2006.07.062
https://doi.org/10.1016/j.msea.2006.07.062

[22] Liu, N.; Häublein, V.; Zhou, X.; Venkatesan, U.; Hartmann, M.; Mačković, M.; Nakajima, T.; Spiecker, E.; Osvet, A.; Frey, L.; Schmuki, P. "Black" TiO2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal-co-Catalyst Free Photocatalytic H2-Evolution. Nano Lett. 2015, 15, 6815-6820.‏ https://doi.org/10.1021/acs.nanolett.5b02663
https://doi.org/10.1021/acs.nanolett.5b02663

[23] Ullattil, S.G.; Periyat, P. A 'One Pot'Gel Combustion Strategy towards Ti3+ Self-Doped 'Black'Anatase TiO2−x Solar Photocatalyst. J. Mater. Chem. A 2016, 4, 5854-5858.‏ https://doi.org/10.1039/C6TA01993E
https://doi.org/10.1039/C6TA01993E

[24] Moore, D.M.; Reynolds, R.C., Jr. X-Ray Diffraction and the Identification and Analysis of Clay Minerals; Oxford university press: Oxford, 1989.

[25] Kulkarni, M.; Thakur, P. The Effect of UV/TiO2/H2O2 Process and Influence of Operational Parameters on Photocatalytic Degradation of Azo Dye in Aqueous TiO2 Suspension. Chem. Chem. Technol. 2010, 4, 265-270. https://doi.org/10.23939/chcht04.04.265
https://doi.org/10.23939/chcht04.04.265

[26] Chen, Y.; Huang, W.; He, D.; Situ, Y.; Huang, H. Construction of Heterostructured g-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2014, 6, 14405-14414. https://doi.org/10.1021/am503674e
https://doi.org/10.1021/am503674e

[27] Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. et al. Visible-Light Photocatalytic, Solar Thermal and Photoelectrochemical Properties of Aluminium-Reduced Black Titania. Energy Environ. Sci. 2013, 6, 3007-3014. https://doi.org/10.1039/C3EE41817K
https://doi.org/10.1039/c3ee41817k

[28] Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T. Effect of Ti3+ Ions and Conduction Band Electrons on Photocatalytic and Photoelectrochemical Activity of Rutile Titania for Water Oxidation. J. Phys. Chem. C 2016, 120, 6467-6474. https://doi.org/10.1021/acs.jpcc.6b01481
https://doi.org/10.1021/acs.jpcc.6b01481

[29] Zheng, J.; Liu, L.; Ji, G.; Yang, Q.; Zheng, L.; Zhang, J. Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size-Reactivity Correlation. ACS Appl. Mater. Interfaces 2016, 8, 20074-20081.‏ https://doi.org/10.1021/acsami.6b05993
https://doi.org/10.1021/acsami.6b05993

[30] Schwarzbauer, J.; Heim, S. Lipophilic Organic Contaminants in the Rhine River, Germany. Water Res. 2005, 39, 4735-4748. https://doi.org/10.1016/j.watres.2005.09.029
https://doi.org/10.1016/j.watres.2005.09.029

[31] Parveen, B. Room-Temperature Ferromagnetism in Ni-doped TiO2 Diluted Magnetic Semiconductor Thin Films. J. Appl. Res. Technol. 2019, 15, 132-139.‏ https://doi.org/10.1016/j.jart.2017.01.009
https://doi.org/10.1016/j.jart.2017.01.009

[32] Huang, X.; Han, S.; Huang, W.; Liu, X. Enhancing Solar Cell Efficiency: the Search for Luminescent Materials as Spectral Converters. Chem. Soc. Rev. 2013, 42, 173-201. https://doi.org/10.1039/C2CS35288E
https://doi.org/10.1039/C2CS35288E

[33] Qamar, M.; Muneer, M.; Bahnemann, D. Heterogeneous Photocatalysed Degradation of Two Selected Pesticide Derivatives, Triclopyr and Daminozid in Aqueous Suspensions of Titanium Dioxide. J. Environ. Manage. 2006, 80, 99-106. https://doi.org/10.1016/j.jenvman.2005.09.002
https://doi.org/10.1016/j.jenvman.2005.09.002

[34] Park, N.-G.; Van de Lagemaat, J.; Frank, A.J. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells. J. Phys. Chem. B 2000, 104, 8989-8994. ‏https://doi.org/10.1021/jp994365l
https://doi.org/10.1021/jp994365l