Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts

Sofiia Suberlyak1, Romana Petrina1, Oleksandr Grytsenko1, Nataliia Baran1, Andriy Komar1, Bohdan Berezhnyy1
Affiliation: 
1 Lviv Polytechnic National University, 12, S.Bandery St., Lviv 79013, Ukraine sophiia.a.suberliak@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht16.04.555
AttachmentSize
PDF icon full_text.pdf365.46 KB
Abstract: 
The possibility of using hydrogels based on copolymers of polyvinylpyrrolidone with 2 hydroxyethylmethacrylate to saturate them with plant extracts was established. Hydrogel materials were obtained with extracts of Calendula officinalis and Arnica montana. The sorption capacity of the hydrogels regarding the extract data was determined. The bactericidal and fungicidal activity of the obtained hydrogel materials with extracts of Calendula officinalis and Arnica montana on bacterial strains of Escherichia coli, Staphylococcus aureus and fungal strains of Candida tenuis, Aspergilus niger were investigated.
References: 

[1] Nilforoushzadeh, M.A.; Amirkhani, M.A.; Zarrintaj, P.; Moghaddam, A.S.; Mehrabi, T.; Alavi, S.; Sisakht, M.M. Skin Care and Rejuvenation by Cosmeceutical Facial Mask. J. Cosmet. Dermatol. 2018, 17(5), 693-702. https://doi.org/10.1111/jocd.12730
https://doi.org/10.1111/jocd.12730

[2] Konechna, R.; Khropot, O.; Petrina, R.; Kurka, M.; Gubriy, Z.; Novikov, V. Research of Antioxidant Properties of Extracts of the Plants and the Callus Biomass. Asian J. Pharm. Clin. Res. 2017, 10(7), 182-184. https://doi.org/10.22159/ajpcr.2017.v10i7.18408
https://doi.org/10.22159/ajpcr.2017.v10i7.18408

[3] Krvavych, A.S.; Konechna, R.T.; Mylianych, A.O.; Petrina, R.O.; Fedoryshyn, O.M.; Mykytyuk, O.M.; Semenyshyn, Ye.M.; Atamaniuk, V.M.; Novikov, V.P. Kinetics and Mechanism of the Extraction of Biologically Active Substances from Wild Species G. Imbricatus. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 5, 111-115.

[4] Konechna, R.T.; Konechnyi, Y.T.; Petrina, R.O.; Shykula, R.H.; Wieczorek, P.; Jasicka-Misiak, I.; Novikov, V.P. Obtaining and research of callus mass of Gentiana lutea L. roots. Res. J. Pharm. Biol. Chem. Sci. 2015, 6(4), 1490-1495.

[5] Pal, K.; Banthia, A.K.; Majumdar, D.K. Polymeric Hydrogels: Characterization and Biomedical Applications. Des. Monomers Polym. 2009, 12(3), 197-200. https://doi.org/10.1163/156855509X436030
https://doi.org/10.1163/156855509X436030

[6] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11(4), 449-453. https://doi.org/10.23939/chcht11.04.449
https://doi.org/10.23939/chcht11.04.449

[7] Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18-23. https://doi.org/10.1016/j.addr.2012.09.010
https://doi.org/10.1016/j.addr.2012.09.010

[8] Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21(32-33), 3307-3329. https://doi.org/10.1002/adma.200802106
https://doi.org/10.1002/adma.200802106

[9] Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49(8), 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
https://doi.org/10.1016/j.polymer.2008.01.027

[10] Varvarenko, S.; Voronov, A.; Samaryk, V.; Tarnavchyk, I.; Nosova, N.; Kohut, A.; Voronov, S. Covalent Grafting of Polyacrylamide-Based Hydrogels to a Polypropylene Surface Activated with Functional Polyperoxide. React. Funct. Polym. 2010, 70(9), 647-655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
https://doi.org/10.1016/j.reactfunctpolym.2010.05.014

[11] Lu, H.; Yuan, L.; Yu, X.; Wu, Ch.; He, D.; Deng, J. Recent Advances of on-Demand Dissolution of Hydrogel Dressings. Burns Trauma 2018, 6(35), 1-13. https://doi.org/10.1186/s41038-018-0138-8
https://doi.org/10.1186/s41038-018-0138-8

[12] Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J. Funct. Biomater. 2018, 9(1), 13-33. https://doi.org/10.3390/jfb9010013
https://doi.org/10.3390/jfb9010013

[13] Hennink, W. E.; Kim, S. W.; Feijen, J. Inhibition of Surface Induced Coagulation by Preadsorption of Albumin-Heparin Conjugates. J. Biomed. Mat. Res. 1984, 18(8), 911-926. https://doi.org/10.1002/jbm.820180806
https://doi.org/10.1002/jbm.820180806

[14] Perugini, P.; Bleve, M.; Redondi, R.; Cortinovis, F.; Colpani, A. In vivo Evaluation of the Effectiveness of Biocellulose Facial Masks as Active Delivery Systems to Skin. J. Cosmet. Dermatol. 2019, 19(3), 725-735. https://doi.org/10.1111/jocd.13051
https://doi.org/10.1111/jocd.13051

[15] Pacheco, G.; De Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial Cellulose Skin Masks-Properties and Sensory Tests. J. Cosmet. Dermatol. 2018, 17(5), 840-847. https://doi.org/10.1111/jocd.12441
https://doi.org/10.1111/jocd.12441

[16] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels. Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136-214. https://doi.org/10.5772/intechopen.72082
https://doi.org/10.5772/intechopen.72082

[17] Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications. J. Adv. Res. 2015, 6(2), 105-121. https://doi.org/10.1016/j.jare.2013.07.006
https://doi.org/10.1016/j.jare.2013.07.006

[18] Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-Linked Hydrogels of Polymethacrylic Acid and Poly-4-vinylpyridine in Relation to Erbium Ions. Chem. Chem. Technol. 2019, 13(4), 451-458. https://doi.org/10.23939/chcht13.04.451
https://doi.org/10.23939/chcht13.04.451

[19] Suberlyak, O.; Melnyk, J.; Baran, N. High-Hydrophilic Membranes for Dialysis and Hemodialysis. Engineering Biomaterials 2007, 63, 18-19.

[20] Skorokhoda, V.; Semenyuk, V.; Melnyk, Y.; Suberlyak, O. Hydrogels Penetration and Sorption Properties on the Substances Release Controlled Processes. Chem. Chem. Technol. 2009, 3(2), 117-121. https://doi.org/10.23939/chcht03.02.117
https://doi.org/10.23939/chcht03.02.117

[21] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І; Stasiuk, A.; Samaryk, V.; Varvarenko, S.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45-54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54
https://doi.org/10.32434/0321-4095-2021-134-1-45-54

[22] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, Kh.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(ethylene glycol). Chem. Chem. Technol. 2014, 8(2), 171-176. https://doi.org/10.23939/chcht08.02.171.
https://doi.org/10.23939/chcht08.02.171

[23] Barman, A.; Das, M. Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Mondal, M., Ed.; Springer; Cham, 2018, 1103-130. https://doi.org/10.1007/978-3-319-76573-0_37-1
https://doi.org/10.1007/978-3-319-76573-0_37-1

[24] La Gatta, A.; Salzillo, R.; Catalano, C.; D'Agostino, A.; Pirozzi, A.V.A.; De Rosa, M.; Schiraldi, C. Hyaluronan-based hydrogels as dermal fillers: The Biophysical Properties That Translate into a "Volumetric" Effect. PLоS ONE 2019, 14(6), e0218287. https://doi.org/10.1371/journal.pone.0218287
https://doi.org/10.1371/journal.pone.0218287

[25] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4(4), 297-304. https://doi.org/10.23939/chcht04.04.297
https://doi.org/10.23939/chcht04.04.297

[26] Nosova, N.G.; Samaryk, V.J.; Varvarenko, S.M.; Ferens, M.V.; Voronovska, A.V.; Nagornyak, M.I.; Khomyak, S.V.; Nadashkevych, Z.J.; Voronov, S.A. Porous Polyacrylamide Hydrogels: Preparation and Properties. Vopr. Khimii i Khimicheskoi Tekhnologii 2016, 5-6, 78-86.

[27] Jumadilov, T.; Abilov, Z.; Grazulevicius, J.; Zhunusbekova, N.; Kondaurov, R.; Agibayeva, L.; Akimov, A. Mutual Activation and Sorption Ability of Rare Cross-Linked Networks in Intergel System Based on Polymethacrylic Acid and Poly-4-vinylpyridine Hydrogels in Relation to Lanthanum Ions. Chem. Chem. Technol. 2017, 11(2), 188-194. https://doi.org/10.23939/chcht11.02.188
https://doi.org/10.23939/chcht11.02.188

[28] Yevchuk, I.; Demchyna, O.; Kochubey, V.; Romaniuk, H.; Koval, Z. Synthesis and Characterization of Organic-Inorganic Membranes Containing Sulphogroups. Chem. Chem. Technol. 2013, 7(1), 89-93. https://doi.org/10.23939/chcht07.01.089
https://doi.org/10.23939/chcht07.01.089

[29] Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A. Influence of Hydrogels Initial State on Their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9(4), 459-462. https://doi.org/10.23939/chcht09.04.459
https://doi.org/10.23939/chcht09.04.459

[30] Montheard, J.-P.; Chatzopoulos, M.; Chappard, D. 2-Hydroxyethyl Methacrylate (HEMA): Chemical Properties and Applications in Biomedical Fields. J. Macromol. Sci. C 1992, 32(1), 1-34. https://doi.org/10.1080/15321799208018377
https://doi.org/10.1080/15321799208018377

[31] Malesic, N.; Rusmirovic, J.; Jovasevic, J.; Perisic, M.; Dimitrijevic-Brankovic, S.; Filipovic, J.; Tomic, S. Antimicrobial Hydrogels Based on 2-Hydroxyethyl Methacrylate and Itaconic Acid Containing Silver(I) Ion. Tehnika 2014, 69(4), 563-568. https://doi.org/10.5937/tehnika1404563M
https://doi.org/10.5937/tehnika1404563M

[32] Wang, J.; Wu, W. Swelling Behaviors, Tensile Properties and Thermodynamic Studies of Water Sorption of 2-Hydroxyethyl Methacrylate/Epoxy Methacrylate Copolymeric Hydrogels. Eur. Polym. J. 2005, 41(5), 1143-1151. https://doi.org/10.1016/j.eurpolymj.2004.11.034
https://doi.org/10.1016/j.eurpolymj.2004.11.034

[33] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13(20), 4580-4594. https://doi.org/10.3390/ma13204580
https://doi.org/10.3390/ma13204580

[34] Grytsenko, О.; Pukach, Р.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. Using the Scheffe's Method in the Study of Mathematical Model of Optimization the Polymeric Hydrogels Composite Structures. Math. Model. Comput. 2019, 6(2), 258-267. https://doi.org/10.23939/mmc2019.02.258
https://doi.org/10.23939/mmc2019.02.258

[35] Skorokhoda, V. Matrix Polymerization of 2-Hydroxyethylmethacrylate in the Presence of Polyvinylpyrrolidone in Permanent Magnetic Field. Chem. Chem. Technol. 2010, 4(3), 191-196. https://doi.org/10.23939/chcht04.03.191
https://doi.org/10.23939/chcht04.03.191

[36] Suberlyak, O.V.; Baran, N.M.; Melnyk, Y.Y.; Grytsenko, O.M.; Yaculchak, G.V. Regularities of Strengthening of Film Hydrogel Membranes Based on 2-Hydroxyetylmetacrylate Copolymers and Polyvinylpyrrolidone. Funct. Mater. 2020, 27(2), 329-333. https://doi.org/10.15407/fm27.02.329
https://doi.org/10.15407/fm27.02.329

[37] Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone) - a Versatile Polymer for Biomedical and beyond Medical Applications. Polym. Plast. Technol. Eng. 2015, 54(9), 923-943. https://doi.org/10.1080/03602559.2014.979506
https://doi.org/10.1080/03602559.2014.979506

[38] Grytsenko, O.M.; Suberlyak, O.V.; Moravskyi, V.S.; Gayduk, A.V. Investigation of Nickel Chemical Precipitation Kinetics. EasternEuropean J. Enterp. Technol. 2016, 1(6), 26-31, https://doi.org/10.15587/1729-4061.2016.59506
https://doi.org/10.15587/1729-4061.2016.59506

[39] Krasinskyi, V.; Suberlyak, O.; Dulebová, L.; Antoniuk, V. Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Eng. Mater. 2017, 756, 3-10. https://doi.org/10.4028/www.scientific.net/KEM.756.3
https://doi.org/10.4028/www.scientific.net/KEM.756.3

[40] Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. V. The Technological Parameters Optimization of the Graft Copolymerization 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25-32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
https://doi.org/10.32434/0321-4095-2020-128-1-25-32

[41] Krasinskyi, V.; Suberlyak, O.; Zemke, V.; Klym, Y.; Gaidos, I. The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chem. Chem. Technol. 2019, 13(1), 59-63. https://doi.org/10.23939/chcht13.01.059
https://doi.org/10.23939/chcht13.01.059

[42] Suberlyak, O.V.; Baran, N.M.; Melnyk, Y.Y.; Grytsenko, O.M.; Yatsulchak, H.V. Influence of the Molecular Weight of Polyvinylpyrrolidone on the Physicomechanical Properties of Composite Polyamide Hydrogel Membranes. Mater. Sci. 2020, 55(5), 758-764. https://doi.org/10.1007/s11003-020-00368-3
https://doi.org/10.1007/s11003-020-00368-3

[43] Tang, Q.; Yu, J.-R.; Chen, L.; Zhu, J.; Hu, Z.-M. Preparation and Properties of Morphology Controlled Poly(2-hydroxyethyl methacrylate)/Poly(N-vinyl pyrrolidone) Double Networks for Biomedical Use. Curr. Appl. Phys. 2010, 10(3), 766-770. https://doi.org/10.1016/j.cap.2009.09.012
https://doi.org/10.1016/j.cap.2009.09.012

[44] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič, V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics 2021, 10(5), 620. https://doi.org/10.3390/electronics10050620
https://doi.org/10.3390/electronics10050620

[45] Suberlyak, O.; Skorokhoda, V.; Kozlova, N.; Melnyk, Yu.; Semenyuk, N.; Chopyk, N. The Polyvinylpyrrolidone Graft Copolymers and Soft Contact Lenses on Their Basis. ScienceRise 2014, 5(3), 52-57. https://doi.org/10.15587/2313-8416.2014.33235
https://doi.org/10.15587/2313-8416.2014.33235

[46] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
https://doi.org/10.23939/chcht14.03.312

[47] Jovašević, J.; Dimitrijević, S.; Filipović, J.; Tomić, S.; Mićić, M.; Suljovrujić E. Swelling, Mechanical and Antimicrobial Studies of Ag/P(HEMA/IA)/PVP Semi-IPN Hybrid Hydrogels. Acta Phys. Pol. A 2011, 120, 279-283. https://doi.org/10.12693/APhysPolA.120.279
https://doi.org/10.12693/APhysPolA.120.279

[48] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Gaydos, I.; Kushnirchuk, M.; Berezhnyy, B. Mathematical Modeling and Optimization of Technological Parameters of the Obtaining Process of Hydrogel Medical Dressings. Books of Abstracts, 3rd International Conference on Informatics and Data-Driven Medicine, IDDM 2020, Vaxjo, November 19-21, 2020, CEUR Workshop Proceedings, 2753, 170-177.

[49] Bashtyk, Y.; Fechan, A.; Grytsenko, O.; Hotra, Z.; Kremer, I.; Suberlyak, O.; Aksimentyeva, O.; Horbenko, Y.; Kotsarenko M. Electrical Elements of the Optical Systems Based on Hydrogel-Electrochromic Polymer Composites. Mol. Cryst. Liq. Cryst. 2019, 672, 150-158. https://doi.org/10.1080/15421406.2018.1550546
https://doi.org/10.1080/15421406.2018.1550546

[50] Suberlyak, O.; Hrytsenko, O.; Hischak, Kh. Influence of the Metal Surface of Powder Filler on the Structure and Properties of Composite Materials Based on the Copolymers of Methacrylates with Polyvinylpyrrolidone. Mater. Sci. 2016, 52, 155-164. https://doi.org/10.1007/s11003-016-9938-9
https://doi.org/10.1007/s11003-016-9938-9

[51] Suberlyak, O.; Grytsenko, O. Fundamentals of Technology for Obtaining Metal-Filled Hydrogel Composites. Rastr-7, Lviv 2020, 316.