Investigation of the Sorption Capacity of Polyvinylpyrrolidone Copolymers As the Basis of Hydrogel Cosmetic Masks with Plant Biomass Extracts
Attachment | Size |
---|---|
full_text.pdf | 365.46 KB |
Keywords:
[1] Nilforoushzadeh, M.A.; Amirkhani, M.A.; Zarrintaj, P.; Moghaddam, A.S.; Mehrabi, T.; Alavi, S.; Sisakht, M.M. Skin Care and Rejuvenation by Cosmeceutical Facial Mask. J. Cosmet. Dermatol. 2018, 17(5), 693-702. https://doi.org/10.1111/jocd.12730
https://doi.org/10.1111/jocd.12730
[2] Konechna, R.; Khropot, O.; Petrina, R.; Kurka, M.; Gubriy, Z.; Novikov, V. Research of Antioxidant Properties of Extracts of the Plants and the Callus Biomass. Asian J. Pharm. Clin. Res. 2017, 10(7), 182-184. https://doi.org/10.22159/ajpcr.2017.v10i7.18408
https://doi.org/10.22159/ajpcr.2017.v10i7.18408
[3] Krvavych, A.S.; Konechna, R.T.; Mylianych, A.O.; Petrina, R.O.; Fedoryshyn, O.M.; Mykytyuk, O.M.; Semenyshyn, Ye.M.; Atamaniuk, V.M.; Novikov, V.P. Kinetics and Mechanism of the Extraction of Biologically Active Substances from Wild Species G. Imbricatus. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 5, 111-115.
[4] Konechna, R.T.; Konechnyi, Y.T.; Petrina, R.O.; Shykula, R.H.; Wieczorek, P.; Jasicka-Misiak, I.; Novikov, V.P. Obtaining and research of callus mass of Gentiana lutea L. roots. Res. J. Pharm. Biol. Chem. Sci. 2015, 6(4), 1490-1495.
[5] Pal, K.; Banthia, A.K.; Majumdar, D.K. Polymeric Hydrogels: Characterization and Biomedical Applications. Des. Monomers Polym. 2009, 12(3), 197-200. https://doi.org/10.1163/156855509X436030
https://doi.org/10.1163/156855509X436030
[6] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11(4), 449-453. https://doi.org/10.23939/chcht11.04.449
https://doi.org/10.23939/chcht11.04.449
[7] Hoffman, A.S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev. 2012, 64, 18-23. https://doi.org/10.1016/j.addr.2012.09.010
https://doi.org/10.1016/j.addr.2012.09.010
[8] Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. Adv. Mater. 2009, 21(32-33), 3307-3329. https://doi.org/10.1002/adma.200802106
https://doi.org/10.1002/adma.200802106
[9] Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49(8), 1993-2007. https://doi.org/10.1016/j.polymer.2008.01.027
https://doi.org/10.1016/j.polymer.2008.01.027
[10] Varvarenko, S.; Voronov, A.; Samaryk, V.; Tarnavchyk, I.; Nosova, N.; Kohut, A.; Voronov, S. Covalent Grafting of Polyacrylamide-Based Hydrogels to a Polypropylene Surface Activated with Functional Polyperoxide. React. Funct. Polym. 2010, 70(9), 647-655. https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
https://doi.org/10.1016/j.reactfunctpolym.2010.05.014
[11] Lu, H.; Yuan, L.; Yu, X.; Wu, Ch.; He, D.; Deng, J. Recent Advances of on-Demand Dissolution of Hydrogel Dressings. Burns Trauma 2018, 6(35), 1-13. https://doi.org/10.1186/s41038-018-0138-8
https://doi.org/10.1186/s41038-018-0138-8
[12] Larrañeta, E.; Stewart, S.; Ervine, M.; Al-Kasasbeh, R.; Donnelly, R. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications. J. Funct. Biomater. 2018, 9(1), 13-33. https://doi.org/10.3390/jfb9010013
https://doi.org/10.3390/jfb9010013
[13] Hennink, W. E.; Kim, S. W.; Feijen, J. Inhibition of Surface Induced Coagulation by Preadsorption of Albumin-Heparin Conjugates. J. Biomed. Mat. Res. 1984, 18(8), 911-926. https://doi.org/10.1002/jbm.820180806
https://doi.org/10.1002/jbm.820180806
[14] Perugini, P.; Bleve, M.; Redondi, R.; Cortinovis, F.; Colpani, A. In vivo Evaluation of the Effectiveness of Biocellulose Facial Masks as Active Delivery Systems to Skin. J. Cosmet. Dermatol. 2019, 19(3), 725-735. https://doi.org/10.1111/jocd.13051
https://doi.org/10.1111/jocd.13051
[15] Pacheco, G.; De Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, É.; Trovatti, E. Bacterial Cellulose Skin Masks-Properties and Sensory Tests. J. Cosmet. Dermatol. 2018, 17(5), 840-847. https://doi.org/10.1111/jocd.12441
https://doi.org/10.1111/jocd.12441
[16] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels. Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136-214. https://doi.org/10.5772/intechopen.72082
https://doi.org/10.5772/intechopen.72082
[17] Ahmed, E.M. Hydrogel: Preparation, Characterization, and Applications. J. Adv. Res. 2015, 6(2), 105-121. https://doi.org/10.1016/j.jare.2013.07.006
https://doi.org/10.1016/j.jare.2013.07.006
[18] Jumadilov, T.; Kondaurov, R.; Imangazy, A.; Myrzakhmetova, N.; Saparbekova, I. Phenomenon of Remote Interaction and Sorption Ability of Rare Cross-Linked Hydrogels of Polymethacrylic Acid and Poly-4-vinylpyridine in Relation to Erbium Ions. Chem. Chem. Technol. 2019, 13(4), 451-458. https://doi.org/10.23939/chcht13.04.451
https://doi.org/10.23939/chcht13.04.451
[19] Suberlyak, O.; Melnyk, J.; Baran, N. High-Hydrophilic Membranes for Dialysis and Hemodialysis. Engineering Biomaterials 2007, 63, 18-19.
[20] Skorokhoda, V.; Semenyuk, V.; Melnyk, Y.; Suberlyak, O. Hydrogels Penetration and Sorption Properties on the Substances Release Controlled Processes. Chem. Chem. Technol. 2009, 3(2), 117-121. https://doi.org/10.23939/chcht03.02.117
https://doi.org/10.23939/chcht03.02.117
[21] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І; Stasiuk, A.; Samaryk, V.; Varvarenko, S.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45-54. https://doi.org/10.32434/0321-4095-2021-134-1-45-54
https://doi.org/10.32434/0321-4095-2021-134-1-45-54
[22] Popadyuk, N.; Zholobko, O.; Donchak, V.; Harhay, Kh.; Budishevska, O.; Voronov, A.; Kohut, A.; Voronov, S. Ionically and Covalently Crosslinked Hydrogel Particles Based on Chitosan and Poly(ethylene glycol). Chem. Chem. Technol. 2014, 8(2), 171-176. https://doi.org/10.23939/chcht08.02.171.
https://doi.org/10.23939/chcht08.02.171
[23] Barman, A.; Das, M. Cellulose-Based Hydrogels for Pharmaceutical and Biomedical Applications. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series. Mondal, M., Ed.; Springer; Cham, 2018, 1103-130. https://doi.org/10.1007/978-3-319-76573-0_37-1
https://doi.org/10.1007/978-3-319-76573-0_37-1
[24] La Gatta, A.; Salzillo, R.; Catalano, C.; D'Agostino, A.; Pirozzi, A.V.A.; De Rosa, M.; Schiraldi, C. Hyaluronan-based hydrogels as dermal fillers: The Biophysical Properties That Translate into a "Volumetric" Effect. PLоS ONE 2019, 14(6), e0218287. https://doi.org/10.1371/journal.pone.0218287
https://doi.org/10.1371/journal.pone.0218287
[25] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4(4), 297-304. https://doi.org/10.23939/chcht04.04.297
https://doi.org/10.23939/chcht04.04.297
[26] Nosova, N.G.; Samaryk, V.J.; Varvarenko, S.M.; Ferens, M.V.; Voronovska, A.V.; Nagornyak, M.I.; Khomyak, S.V.; Nadashkevych, Z.J.; Voronov, S.A. Porous Polyacrylamide Hydrogels: Preparation and Properties. Vopr. Khimii i Khimicheskoi Tekhnologii 2016, 5-6, 78-86.
[27] Jumadilov, T.; Abilov, Z.; Grazulevicius, J.; Zhunusbekova, N.; Kondaurov, R.; Agibayeva, L.; Akimov, A. Mutual Activation and Sorption Ability of Rare Cross-Linked Networks in Intergel System Based on Polymethacrylic Acid and Poly-4-vinylpyridine Hydrogels in Relation to Lanthanum Ions. Chem. Chem. Technol. 2017, 11(2), 188-194. https://doi.org/10.23939/chcht11.02.188
https://doi.org/10.23939/chcht11.02.188
[28] Yevchuk, I.; Demchyna, O.; Kochubey, V.; Romaniuk, H.; Koval, Z. Synthesis and Characterization of Organic-Inorganic Membranes Containing Sulphogroups. Chem. Chem. Technol. 2013, 7(1), 89-93. https://doi.org/10.23939/chcht07.01.089
https://doi.org/10.23939/chcht07.01.089
[29] Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A. Influence of Hydrogels Initial State on Their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9(4), 459-462. https://doi.org/10.23939/chcht09.04.459
https://doi.org/10.23939/chcht09.04.459
[30] Montheard, J.-P.; Chatzopoulos, M.; Chappard, D. 2-Hydroxyethyl Methacrylate (HEMA): Chemical Properties and Applications in Biomedical Fields. J. Macromol. Sci. C 1992, 32(1), 1-34. https://doi.org/10.1080/15321799208018377
https://doi.org/10.1080/15321799208018377
[31] Malesic, N.; Rusmirovic, J.; Jovasevic, J.; Perisic, M.; Dimitrijevic-Brankovic, S.; Filipovic, J.; Tomic, S. Antimicrobial Hydrogels Based on 2-Hydroxyethyl Methacrylate and Itaconic Acid Containing Silver(I) Ion. Tehnika 2014, 69(4), 563-568. https://doi.org/10.5937/tehnika1404563M
https://doi.org/10.5937/tehnika1404563M
[32] Wang, J.; Wu, W. Swelling Behaviors, Tensile Properties and Thermodynamic Studies of Water Sorption of 2-Hydroxyethyl Methacrylate/Epoxy Methacrylate Copolymeric Hydrogels. Eur. Polym. J. 2005, 41(5), 1143-1151. https://doi.org/10.1016/j.eurpolymj.2004.11.034
https://doi.org/10.1016/j.eurpolymj.2004.11.034
[33] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13(20), 4580-4594. https://doi.org/10.3390/ma13204580
https://doi.org/10.3390/ma13204580
[34] Grytsenko, О.; Pukach, Р.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. Using the Scheffe's Method in the Study of Mathematical Model of Optimization the Polymeric Hydrogels Composite Structures. Math. Model. Comput. 2019, 6(2), 258-267. https://doi.org/10.23939/mmc2019.02.258
https://doi.org/10.23939/mmc2019.02.258
[35] Skorokhoda, V. Matrix Polymerization of 2-Hydroxyethylmethacrylate in the Presence of Polyvinylpyrrolidone in Permanent Magnetic Field. Chem. Chem. Technol. 2010, 4(3), 191-196. https://doi.org/10.23939/chcht04.03.191
https://doi.org/10.23939/chcht04.03.191
[36] Suberlyak, O.V.; Baran, N.M.; Melnyk, Y.Y.; Grytsenko, O.M.; Yaculchak, G.V. Regularities of Strengthening of Film Hydrogel Membranes Based on 2-Hydroxyetylmetacrylate Copolymers and Polyvinylpyrrolidone. Funct. Mater. 2020, 27(2), 329-333. https://doi.org/10.15407/fm27.02.329
https://doi.org/10.15407/fm27.02.329
[37] Teodorescu, M.; Bercea, M. Poly(vinylpyrrolidone) - a Versatile Polymer for Biomedical and beyond Medical Applications. Polym. Plast. Technol. Eng. 2015, 54(9), 923-943. https://doi.org/10.1080/03602559.2014.979506
https://doi.org/10.1080/03602559.2014.979506
[38] Grytsenko, O.M.; Suberlyak, O.V.; Moravskyi, V.S.; Gayduk, A.V. Investigation of Nickel Chemical Precipitation Kinetics. EasternEuropean J. Enterp. Technol. 2016, 1(6), 26-31, https://doi.org/10.15587/1729-4061.2016.59506
https://doi.org/10.15587/1729-4061.2016.59506
[39] Krasinskyi, V.; Suberlyak, O.; Dulebová, L.; Antoniuk, V. Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Eng. Mater. 2017, 756, 3-10. https://doi.org/10.4028/www.scientific.net/KEM.756.3
https://doi.org/10.4028/www.scientific.net/KEM.756.3
[40] Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. V. The Technological Parameters Optimization of the Graft Copolymerization 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25-32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
https://doi.org/10.32434/0321-4095-2020-128-1-25-32
[41] Krasinskyi, V.; Suberlyak, O.; Zemke, V.; Klym, Y.; Gaidos, I. The Role of Polyvinylpyrrolidone in the Formation of Nanocomposites Based on Acompatible Polycaproamide and Polypropylene. Chem. Chem. Technol. 2019, 13(1), 59-63. https://doi.org/10.23939/chcht13.01.059
https://doi.org/10.23939/chcht13.01.059
[42] Suberlyak, O.V.; Baran, N.M.; Melnyk, Y.Y.; Grytsenko, O.M.; Yatsulchak, H.V. Influence of the Molecular Weight of Polyvinylpyrrolidone on the Physicomechanical Properties of Composite Polyamide Hydrogel Membranes. Mater. Sci. 2020, 55(5), 758-764. https://doi.org/10.1007/s11003-020-00368-3
https://doi.org/10.1007/s11003-020-00368-3
[43] Tang, Q.; Yu, J.-R.; Chen, L.; Zhu, J.; Hu, Z.-M. Preparation and Properties of Morphology Controlled Poly(2-hydroxyethyl methacrylate)/Poly(N-vinyl pyrrolidone) Double Networks for Biomedical Use. Curr. Appl. Phys. 2010, 10(3), 766-770. https://doi.org/10.1016/j.cap.2009.09.012
https://doi.org/10.1016/j.cap.2009.09.012
[44] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič, V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics 2021, 10(5), 620. https://doi.org/10.3390/electronics10050620
https://doi.org/10.3390/electronics10050620
[45] Suberlyak, O.; Skorokhoda, V.; Kozlova, N.; Melnyk, Yu.; Semenyuk, N.; Chopyk, N. The Polyvinylpyrrolidone Graft Copolymers and Soft Contact Lenses on Their Basis. ScienceRise 2014, 5(3), 52-57. https://doi.org/10.15587/2313-8416.2014.33235
https://doi.org/10.15587/2313-8416.2014.33235
[46] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14(3), 312-317. https://doi.org/10.23939/chcht14.03.312
https://doi.org/10.23939/chcht14.03.312
[47] Jovašević, J.; Dimitrijević, S.; Filipović, J.; Tomić, S.; Mićić, M.; Suljovrujić E. Swelling, Mechanical and Antimicrobial Studies of Ag/P(HEMA/IA)/PVP Semi-IPN Hybrid Hydrogels. Acta Phys. Pol. A 2011, 120, 279-283. https://doi.org/10.12693/APhysPolA.120.279
https://doi.org/10.12693/APhysPolA.120.279
[48] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Gaydos, I.; Kushnirchuk, M.; Berezhnyy, B. Mathematical Modeling and Optimization of Technological Parameters of the Obtaining Process of Hydrogel Medical Dressings. Books of Abstracts, 3rd International Conference on Informatics and Data-Driven Medicine, IDDM 2020, Vaxjo, November 19-21, 2020, CEUR Workshop Proceedings, 2753, 170-177.
[49] Bashtyk, Y.; Fechan, A.; Grytsenko, O.; Hotra, Z.; Kremer, I.; Suberlyak, O.; Aksimentyeva, O.; Horbenko, Y.; Kotsarenko M. Electrical Elements of the Optical Systems Based on Hydrogel-Electrochromic Polymer Composites. Mol. Cryst. Liq. Cryst. 2019, 672, 150-158. https://doi.org/10.1080/15421406.2018.1550546
https://doi.org/10.1080/15421406.2018.1550546
[50] Suberlyak, O.; Hrytsenko, O.; Hischak, Kh. Influence of the Metal Surface of Powder Filler on the Structure and Properties of Composite Materials Based on the Copolymers of Methacrylates with Polyvinylpyrrolidone. Mater. Sci. 2016, 52, 155-164. https://doi.org/10.1007/s11003-016-9938-9
https://doi.org/10.1007/s11003-016-9938-9
[51] Suberlyak, O.; Grytsenko, O. Fundamentals of Technology for Obtaining Metal-Filled Hydrogel Composites. Rastr-7, Lviv 2020, 316.