Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis and Properties of Phosphorus-Containing Pseudo-Poly(Amino Acid)sof Polyester Type Based on N-Derivatives of Glutaminic Acid

Anna Stasiuk1, Nataliia Fihurka1, Vasyl Vlizlo2, Sofiia Prychak1, Dmytro Ostapiv3, Serhii Varvarenko1, Volodymyr Samaryk1
Affiliation: 
1Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine 2Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 50 Pekarska St., Lviv79010, Ukraine 3Institute of Animal Biology NAAS, 38 V. Stusa St., Lviv 79034, Ukraine anna.v.stasiuk@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht16.01.051
AttachmentSize
PDF icon full_text.pdf370.73 KB
Abstract: 
Poly(phosphoeter)s (PPE)s are a class of polymers possessing a high chemical functionality and biodegradability. Novel, glutamic acid based poly(phosphoeter)s were synthesized by the Steglich reaction. The developed synthetic approach allows controlling the composition and the structure of PPEs, and therefore their physical and colloidal properties. The studies on solubilization and cytotoxicity in vitro proved the potential of PPEs for drug delivery applications.
References: 

[1]Brannigan, R.P.; Dove, A.P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci.2017,5, 9-21. https://doi.org/10.1039/c6bm00584e
https://doi.org/10.1039/C6BM00584E

[2]Urbánek, T.; Jäger. E.; Jäger, A.; Hrubý, M. Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers2019,11, 1061. https://doi.org/10.3390/polym11061061
https://doi.org/10.3390/polym11061061

[3]Brzozowski, Z.K.; Szymańska, E.; Bratychak, M.M. New Epoxy-Unsaturated Polyester Resin Copolymers. React. Funct. Polym. 1999,33, 217-224. https://doi.org/10.1016/s1381-5148(97)00045-x
https://doi.org/10.1016/S1381-5148(97)00045-X

[4]Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Shirazi, A.N.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers2016,8, 20.https://doi.org/10.3390/polym8010020
https://doi.org/10.3390/polym8010020

[5]Varvarenko, S.; Tarnavchyk, I.; Voronov, A.; Fihurka, N.; Dron, I.; Nosova, N.; Taras, R.; Samaryk, V.; Voronov, S. Synthesis and Colloidal Properties of Polyesters Based on Glutamic Acids and Glycols of Different Nature. Chem. Chem. Technol. 2013,7, 161-168. https://doi.org/10.23939/chcht07.02.161
https://doi.org/10.23939/chcht07.02.161

[6]Bashta, B.; Bruzdziak, P.; Astakhova, O.; Shyshchak, O.; Bratychak, M. Synthesis and Properties of Carboxy-Containing Peroxy Oligomer. Chem. Chem. Technol.2013,7, 413-421. https://doi.org/10.23939/chcht07.04.413
https://doi.org/10.23939/chcht07.04.413

[7]Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Introduction-Biomaterials Science: AnEvolving, Multidisciplinary Endeavor. In Biomaterials Science, 3rd ed.; Lemons, B.D., Ratner, A.S., Hoffman, F.J., Schoen, J.E., Eds.; Academic Press: Boston, MA, USA, 2013; pp 25-39. https://doi.org/10.1016/B978-0-08-087780-8.00153-4
https://doi.org/10.1016/B978-0-08-087780-8.00153-4

[8] Diaz, A.; Katsarava, R.; Puiggali, J. Synthesis, Properties and Applications of Biodegradable Polymers Derived From Diols and Dicarboxylic Acids: From Polyesters to Poly(Ester Amide)s. Int. J Mol. Sci. 2014, 15, 7064-7123.https://doi.org/10.3390/ijms15057064
https://doi.org/10.3390/ijms15057064

[9]Yakoviv, M.; Fihurka, N.; Nosova, N.; Samaryk, V.; Vasylyshyn, T.; Hermanovych, S.; Voronov, S.; Varvarenko, S. Researches of Amphiphilic Properties of Copolyesterswith Chromophore Groups. Chem. Chem. Technol. 2018,12, 318-325. https://doi.org/10.23939/chcht12.03.318
https://doi.org/10.23939/chcht12.03.318

[10]Bratychak, M.; Bratychak, M.; Brostow, W.; Shyshchak, O. Synthesis and Properties of Peroxy Derivatives of Epoxy Resins Based on Bisphenol A: Effects of the Presence of Boron Trifluoride Ethereate. Mater. Res. Innov. 2002,6,24-30. https://doi.org/10.1007/s10019-002-0157-7
https://doi.org/10.1007/s10019-002-0157-7

[11] Da Costa, R.C.; Pereira, E.D.; Silva, F.M.; De Jesus, E.O.; SouzaJr., F.G. Drug Micro-Carriers Based on Polymers and Their Sterilization. Chem. Chem. Technol. 2018, 12, 473-487. https://doi.org/10.23939/chcht12.04.473
https://doi.org/10.23939/chcht12.04.473

[12]Ivashkiv, O.; Namiesnik, J.; Shyshchak, O.; Polyuzhyn, I.; Bratychak, M. Synthesis and Properties of Oligomers with Hydroxy End-Groups. Chem. Chem. Technol.2016,10, 587-594. https://doi.org/10.23939/chcht10.04si.587
https://doi.org/10.23939/chcht10.04si.587

[13]Ivanchenko, O.; Authesserre, U.; Coste, G.; Mazières, S.; Destarac, M.; Harrisson, S. ϵ-Thionocaprolactone: An Accessible Monomer for Preparation of Degradable Poly(Vinyl Esters) by Radical Ring-Opening Polymerization. Polym. Chem.2021,12, 1931-1938. https://doi.org/10.1039/D1PY00080B
https://doi.org/10.1039/D1PY00080B

[14]Wang, Y.-C.; Yuan, Y.-Y.; Du, J.-Z.; Yang, X.-Z.; Wang, J. Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromol. Biosci.2009,9, 1154-1164. https://doi.org/10.1002/mabi.200900253
https://doi.org/10.1002/mabi.200900253

[15]Buls, V.W.; Creek, W.; Morris, R.C. Polyesters of Phosphoryl-Substitute Alcohols and Polybasic Phosphorus Acids. U.S.Patent 2807636, September 24,1957.

[16] Yang, X.-Z.; Sun, T.-M.; Dou, S.; Wu, J.; Wang, Y.-C.; Wang, J. Block Copolymer of Polyphosphoester and Poly(l-Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules2009,10, 2213-2220. https://doi.org/10.1021/bm900390k
https://doi.org/10.1021/bm900390k

[17] Strasser, P.; Teasdale, I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules2020, 25, 1716. https://doi.org/10.3390/molecules25071716
https://doi.org/10.3390/molecules25071716

[18]Vanslambrouck, S.; Riva, R.; Ucakar, B.; Préat, V.; Gagliardi, M.; Molin, D.G.M.; Lecomte, P.; Jérôme, C. Thiol-ene Reaction: An Efficient Toolto Design Lipophilic Polyphosphoesters for Drug Delivery Systems. Molecules2021, 26, 1750. https://doi.org/10.3390/molecules26061750
https://doi.org/10.3390/molecules26061750

[19] Bauer, K.N.; Tee, H.T.;Velencoso, M.M.;Wurm, F.R. Main-Chain Poly(Phosphoester)s: History, Syntheses, Degradation, Bio- and Flame-Retardant Applications. Prog. Polym. Sci. 2017,73, 61-122. https://doi.org/10.1016/j.progpolymsci.2017.05.004
https://doi.org/10.1016/j.progpolymsci.2017.05.004

[20] Steinbach, T.; Wurm, F.R. Poly(Phosphoester)s: a New Platform For Degradable Polymers. Angew. Chem. Int. Ed. 2015, 54, 6098-6108. https://doi.org/10.1002/anie.201500147
https://doi.org/10.1002/anie.201500147

[21]Schöttler, S.; Becker, G.;Winzen, S.;Steinbach, T.;Mohr, K.;Landfester, K.;Mailänder, V.;Wurm, F.R. Protein Adsorption is Required for Stealth Effect of Poly(Ethylene Glycol)- and Poly(Phosphoester)-Coated Nanocarriers. Nat. Nanotechnol. 2016,11, 372-377. https://doi.org/10.1038/nnano.2015.330
https://doi.org/10.1038/nnano.2015.330

[22] Pelosi, C.; Tinè, M. R.; Wurm, F.R. Main-Chain Water-Soluble Polyphosphoesters: Multi-Functional Polymers as Degradable PEG-Alternatives for Biomedical Applications. Eur. Polym. J. 2020, 141, 110079.https://doi.org/10.1016/j.eurpolymj.2020.110079
https://doi.org/10.1016/j.eurpolymj.2020.110079

[23] Nicolas, J.; Mura, S.; Brambilla, D.; Mackiewicz, N.; Couvreur, P. Design, Functionalization Strategies and Biomedical Applications of Targeted Biodegradable/Biocompatible Polymer-Based Nanocarriers for Drug Delivery. Chem. Soc. Rev.2013, 42, 1147-235. https://doi.org/10.1039/C2CS35265F
https://doi.org/10.1039/C2CS35265F

[24] Gordillo-Galeano, A.; Ponce, A.; Mora-Huertas, C.E. Surface Structural Characteristics of Some Colloidal Lipid Systems Used in Pharmaceutics. J. Drug Deliv. Sci. Technol.2021, 62, 02345. https://doi.org/10.1016/j.jddst.2021.102345
https://doi.org/10.1016/j.jddst.2021.102345

[25] Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S-U. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials2020, 10, 1970. https://doi.org/10.3390/nano10101970
https://doi.org/10.3390/nano10101970

[26]Atanase, L.I. Micellar Drug Delivery Systems Based on Natural Biopolymers. Polymers2021, 13, 477. https://doi.org/10.3390/polym13030477
https://doi.org/10.3390/polym13030477

[27]Varvarenko, S.M.; Ferens, M.V.; Samaryk, V.Y.; Nosova, N.G.; Fihurka, N.V.; Ostapiv, D.D.; Voronov, S.A. Synthesis of Copolyestersof Fluorescein and 2-(Dodecanamino) Pentanedionic Acid via Steglich Reaction. VoprosyKhimiiiKhimicheskoiTekhnologii2018,2, 5-15.

[28]Kuznetsova, K.I.; Vostres, V.B.; Fleychuk, R.I.; Hevus, O.I. Synthesis of Surface-Active Monomers and Peroxides on the Basis of Disubstituted Oxetane. VoprosyKhimiiiKhimicheskoiTekhnol.2019,2, 5-11. https://doi.org/10.32434/0321-4095-2019-123-2-5-11
https://doi.org/10.32434/0321-4095-2019-123-2-5-11

[29]Nagornyak, M.; Fihurka, N.; Samaryk, V.; Varvarenko, S.; Ferens, M.; Oleksa, V. Modification of Polysaccharides By N-Derivatives of Glutamic Acid Using Steglich Reaction. Chem. Chem. Technol.2016, 10, 423-427. https://doi.org/10.23939/chcht10.04.423
https://doi.org/10.23939/chcht10.04.423

[30]Zubyk, H.; Plonska-Brzezinska, M.; Shyshchak, O.; Astakhova, O.; Bratychak, M. Study of Phenol-Formaldehyde Oligomers Derivatives Structure by IR- and NMR-Spectroscopy. Chem. Chem. Technol. 2015, 9, 435-444. https://doi.org/10.23939/chcht09.04.435
https://doi.org/10.23939/chcht09.04.435

[31]Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol., 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
https://doi.org/10.23939/chcht09.01.069

[32]Iatsyshyn, O.; Astakhova, O.; Shyshchak, O.; Lazorko, O.; Bratychak, M. MonomethacrylateDerivative of Ed-24 Epoxy Resin and Its Application. Chem. Chem. Technol., 2015, 7(1), 73-77. https://doi.org/10.23939/chcht07.01.073
https://doi.org/10.23939/chcht07.01.073

[33]Demchuk, Z.; Savka, M.; Voronov, A.; Budishevska, O.; Donchak, V.; Voronov, S. Amphiphilic Cholesterol Containing Polymers for Drug Delivery Systems. Chem. Chem. Technol. 2016, 10, 561-570. https://doi.org/10.23939/chcht10.04si.561
https://doi.org/10.23939/chcht10.04si.561

[34]Matysik, S. I.; Kuzminov, B. P.;Ostapiv, D. D. Cytotoxic Action of Hepatoprotector Antral on Bull Sperm. Gig. Sanit.2020, 99, 206-209. https://doi.org/10.33029/0016-9900-2020-99-2-206-209
https://doi.org/10.33029/0016-9900-2020-99-2-206-209

[35]Chekh, B.O.; Ferens, M.V.; Ostapiv, D.D.; Samaryk, V.Y.; Varvarenko, S.M.; Vlizlo, V.V. Characteristics of Novel Polymer Based on Pseudo-Polyamino Acids Glula-DPG-PEG600: Binding of Albumin, Biocompatibility, Biodistribution and Potential Crossing the Blood-Brain Barrier in Rats. Ukr. Biochem. J.2017, 89, 13-21. https://doi.org/10.15407/ubj89.04.013
https://doi.org/10.15407/ubj89.04.013

[36]Fihurka, N.; Tarnavchyk, I.; Samaryk, V.; Varvarenko, S.; Nosova, N.; Voronov, A.; Nagornyak, M.; Ferens, M.; Voronov, S.A. Study of an Irreversible Condensation of Glutamic Acid and Polyoxyethylene/Polyoxypropylene Diols Using Thionyl Chloride. Org. Prep. Proc. Int. 2018, 50, 502-508.https://doi.org/10.1080/00304948.2018.1525674
https://doi.org/10.1080/00304948.2018.1525674