Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Measures for Immobilization of Radioactive Waste in the Structure of Glass and Glass-Ceramics under Martial Law

Oksana Savvova1, Natalia Teliura1, Maksym Hozha1, Оlena Babich1, Yuliia Smyrnova1, Iryna Lutsiuk2
Affiliation: 
1 Department of Chemistry and Integrated Technologies, O.M. Beketov National University of Urban Economy in Kharkiv, 17 M. Bazhanov St., Kharkiv 61002, Ukraine 2 Department of Chemical Technology of Silicates, Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine Olena.Babich@kname.edu.ua
DOI: 
https://doi.org/10.23939/chcht19.02.297
AttachmentSize
PDF icon full_rext.pdf339.13 KB
Abstract: 
The regulatory framework for radioactive waste management and its peculiarities in crisis situations are analyzed. The perspective directions of creation of high-tech materials for solid-state matrices for radioactive waste immobilization are determined. A methodological approach to the creation of high-strength glass-ceramic materials with high resistance to radiation, chemical, thermal, and mechanical effects has been developed. The choice of glass compositions for obtaining glass-ceramic materials and compositions based on them for the inclusion of radioactive waste in their composition is substantiated. The structure and the influence of phase composition on the functional properties of glass-ceramic materials are investigated. The prospects of using glass-ceramic materials based on anorthite and hydroxyapatite for long-term immobilization of radioactive waste in crisis situations are determined.
References: 

[1] Ojovan, M.І.; Yudintsev, S.V. Glass, Ceramic, and Glass-Crystalline Matrices for HLW Immobilization. Open Ceramics 2023, 14, 100355. https://doi.org/10.1016/j.oceram.2023.100355
https://doi.org/10.1016/j.oceram.2023.100355

[2] Hyatt, N.C.; Ojovan, M.I. Special Issue: Materials for Nuclear Waste Immobilization. Materials 2019, 12, 3611. https://doi.org/10.3390/ma12213611
https://doi.org/10.3390/ma12213611

[3] Goel, A.; McCloy, J.S.; Pokorny, R.; Kruger, A.A. Challenges with Vitrification of Hanford High-Level Waste (HLW) to Borosilicate Glass - An Overview. J. Non-Cryst. Solids. 2019, 4, 100033. https://doi.org/10.1016/j.nocx.2019.100033
https://doi.org/10.1016/j.nocx.2019.100033

[4] Tan, P.; Shu, X.; Wen, M.; Li, L.; Lu, Y.; Lu, X.; Chen, S.; Dong, F. Characteristics of Cerium Doped Aluminosilicate Glass as Simulated Radioactive Waste Forms: Effect on Structures and Properties. Prog. Nucl. Energy. 2022, 150, 104299. https://doi.org/10.1016/j.pnucene.2022.104299
https://doi.org/10.1016/j.pnucene.2022.104299

[5] Wang, F.; Wang, Y.; Chen, J.; Liao, Q.; Zhu, H.; Zhou, J.; Qu, X.; Gong, Z.; Fu, X.; Zhu, Y. Effect of Cerium Oxide on Phase Composition, Structure, Thermal Stability and Aqueous Durability of Sodium-Iron-Boron-Phosphate Based Glasses. J. Nucl. Mater. 2021, 556, 153199. https://doi.org/10.1016/j.jnucmat.2021.153199
https://doi.org/10.1016/j.jnucmat.2021.153199

[6] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711-718. https://doi.org/10.23939/chcht17.04.711
https://doi.org/10.23939/chcht17.04.711

[7] Wang, L.; Liang; T. Review Ceramics for High Level Radioactive Waste Solidification. J. Adv. Ceram. 2012, 1, 194-203. https://doi.org/10.1007/s40145-012-0019-8
https://doi.org/10.1007/s40145-012-0019-8

[8] Kumar, N.; Aggarwal, N. Ceramics for High-Level Nuclear Waste Immobilization. AIP Conf. Proc. 2023, 2735, 020016. https://doi.org/10.1063/5.0141085
https://doi.org/10.1063/5.0141085

[9] Savvova, O.; Voronov, H.; Fesenko, O.; Riabinin, S.; Tymofieiev, V. High-Strength Glass-Ceramic Material with Low Temperature Formation. Chem. Chem. Technol. 2022, 16, 337-344. https://doi.org/10.23939/chcht16.02.337
https://doi.org/10.23939/chcht16.02.337

[10] Kim, M.; Heo, J. Calcium-Borosilicate Glass-Ceramics Wasteforms to Immobilize Rare-Earth Oxide Wastes from Pyro-Processing. J. Nucl. Mater. 2015, 467, 224-228. https://doi.org/10.1016/j.jnucmat.2015.09.04
https://doi.org/10.1016/j.jnucmat.2015.09.040

[11] Yang, L.; Zhu, Y.; Huo, J.; Cui, Z.; Zhang, X.; Dong, X.; Feng, J. Solubility and Valence Variation of Ce in Low-Alkali Borosilicate Glass and Glass Network Structure Analysis. Materials 2023, 16, 5063. https://doi.org/10.3390/ma16145063
https://doi.org/10.3390/ma16145063

[12] Fabian, M.; Gergely, F.; Osan, J.; Cendak, T.; Kesari, S.; Rao, R. Structural Investigation of Borosilicate Glasses Containing Lanthanide Ions. Sci. Rep. 2020, 10, 7835. https://doi.org/10.1038/s41598-020-64754-2
https://doi.org/10.1038/s41598-020-64754-2

[13] Yang, J.H.; Park, H.-S.; Cho, Y.-Z. Al2O3-Containing Silver Phosphate Glasses as Hosting Matrices for Radioactive Iodine. J. Nucl. Sci. Technol. 2017, 54, 1330-1337. https://doi.org/10.1080/00223131.2017.1365025
https://doi.org/10.1080/00223131.2017.1365025

[14] Pilania, R.K.; Dube, C.L. Matrices for Radioactive Waste Immobilization: A Review. Front. Mater. 2023, 10, 1236470. https://doi.org/10.3389/fmats.2023.1236470
https://doi.org/10.3389/fmats.2023.1236470

[15] McCloy, J.; Goel, A. Glass-Ceramics for Nuclear-Waste Immobilization. MRS Bulletin 2017, 42, 233-240. https://doi.org/10.1557/mrs.2017.8
https://doi.org/10.1557/mrs.2017.8

[16] Fu, L.; Engqvist, H.; Xia, W. Glass-Ceramics in Dentistry: A Review. Materials (Basel) 2020, 26, 1049. https://doi.org/10.3390/ma13051049
https://doi.org/10.3390/ma13051049

[17] Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides Containment in Nuclear Glasses: An Overview(Review). Radiochim. Acta 2017, 105, 927-959. https://doi.org/10.1515/ract-2016-2658
https://doi.org/10.1515/ract-2016-2658

[18] Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117. https://doi.org/10.3390/su13084117
https://doi.org/10.3390/su13084117

[19] Caurant, D.; Majérus, O. Glasses and Glass-Ceramics for Nuclear Waste Immobilization. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier Inc., 2021; pp 762-778. https://doi.org/10.1016/b978-0-12-818542-1.00090-4
https://doi.org/10.1016/B978-0-12-818542-1.00090-4

[20] Gabelkov, S.V.; Logvinkov, D.S.; Saenko, S.Yu.; Tarasov, R.V.; Holomeev G.A. Poluchenie steklokeramicheskih i keramicheskih materialov dlya izolyacii radioaktivnyh othodov. Voprosy atomnoj nauki i tehniki 2003, 13, 172-174.

[21] Zhang, X.Y.; Yang, F.; Zhu, S.K.; Chen, X.; Qin, K.M.; Wang, T.S.; Peng, H.B. Influence of Ion Radiation on Leaching Behavior of Borosilicate Glass. J. Non-Cryst. Solids 2023, 602, 122091. https://doi.org/10.1016/j.jnoncrysol.2022.122
https://doi.org/10.1016/j.jnoncrysol.2022.122091

[22] Li, H.; Wu, L.; Wang, X.; Xu, D.; Teng, Y.; Li, Y. Crystallization Behavior and Microstructure of Barium Borosilicate Glass-Ceramics. Ceram. Int. 2015, 41, 15202-15207. https://doi.org/10.1016/j.ceramint.2015.08.095
https://doi.org/10.1016/j.ceramint.2015.08.095

[23] Savvova, O.V.; Voronov, G.K.; Babich, O.V.; Topchiy, V.L.; Fesenko, O.I.; Tymofieiev, V.D. Protective Impact Resistant Composite Materials Based on Aluminium-Silicate Glass-Ceramics. Funct. Mater. 2019, 26, 182-188. https://doi.org/10.15407/FM26.01.182
https://doi.org/10.15407/fm26.01.182

[24] Savvova, O.V.; Babich, O.V.; Fesenko, O.I.; Topchij, V.L.; Hristich, O.V. Rozrobka visokomicnih anortitovih sitaliv. Voprosy khimii i khimicheskoi tekhnologii 2019, 6, 190-196. https://doi.org/10.32434/0321-4095-2019-127-6-190-196
https://doi.org/10.32434/0321-4095-2019-127-6-190-196

[25] Sayenko, S. Yu.; Svitlychnyi, Ye. O.; Shkuropatenko, V. A.; Zykova, A. V.; Ledovska, O. G.; Ledovska, L. M.; Kholomyeyev, G. O.; Myronova, A. G.; Odeychuk, M. O. Glass-Ceramic Matrices Based on Borosilicate and Phosphate Materials for the Immobilization of Radioactive Waste. Funct. Mater. 2020, 27, 39-45. https://doi.org/10.15407/fm27.01.39
https://doi.org/10.15407/fm27.01.39

[26] Liu, J.; Wang, F.; Liao, Q.; Zhu, H.; Liu, D.; Zhu, Y. Synthesis and Characterization of Phosphate-Based Glass-Ceramics for Nuclear Waste Immobilization: Structure, Thermal Behavior, and Chemical Stability. J. Nucl. Mater. 2019, 513, 251-259. https://doi.org/10.1016/j.jnucmat.2018.11.002
https://doi.org/10.1016/j.jnucmat.2018.11.002

[27] Loiseau, P.; Caurant, D. Glass-Ceramic Nuclear Waste Forms Obtained by Crystallization of SiO2 -Al2O3 -CaO-ZrO2 -TiO2 Glasses Containing Lanthanides (Ce, Nd, Eu, Gd, Yb) and Actinides (Th): Study of the Crystallization from the Surface. J. Nucl. Mater. 2010, 402, 38-54. https://doi.org/10.1016/j.jnucmat.2010.04.0
https://doi.org/10.1016/j.jnucmat.2010.04.021

[28] ASTM C1285-21 Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) (accessed 2024-08-25).

[29] Savvova, O.V.; Shimon, V.M.; Babich, O.V.; Fesenko, O.I. Development of Calcium Phosphate-Silicate Glass Ceramic Materials Resistant to Biochemical and Mechanical Destruction. Funct. Mater. 2020, 27, 767-773. https://doi.org/10.15407/fm27.04.767
https://doi.org/10.15407/fm27.04.767

[30] Savvova, O.; Shadrina, G.; Babich, O.; Fesenko, О. Investigation of Surface Free Energy of the Glass Ceramic Coatings on Titanium for Medical Purposes. Chem. Chem. Technol. 2015, 9, 349-354. https://doi.org/10.23939/chcht09.03.349
https://doi.org/10.23939/chcht09.03.349