Заходи щодо іммобілізації радіоактивних відходів у структурі скла та склокераміки в умовах воєнного стану
| Attachment | Size |
|---|---|
| 339.13 KB |
[1] Ojovan, M.І.; Yudintsev, S.V. Glass, Ceramic, and Glass-Crystalline Matrices for HLW Immobilization. Open Ceramics 2023, 14, 100355. https://doi.org/10.1016/j.oceram.2023.100355
[2] Hyatt, N.C.; Ojovan, M.I. Special Issue: Materials for Nuclear Waste Immobilization. Materials 2019, 12, 3611. https://doi.org/10.3390/ma12213611
[3] Goel, A.; McCloy, J.S.; Pokorny, R.; Kruger, A.A. Challenges with Vitrification of Hanford High-Level Waste (HLW) to Borosilicate Glass – An Overview. J. Non-Cryst. Solids. 2019, 4, 100033. https://doi.org/10.1016/j.nocx.2019.100033
[4] Tan, P.; Shu, X.; Wen, M.; Li, L.; Lu, Y.; Lu, X.; Chen, S.; Dong, F. Characteristics of Cerium Doped Aluminosilicate Glass as Simulated Radioactive Waste Forms: Effect on Structures and Properties. Prog. Nucl. Energy. 2022, 150, 104299. https://doi.org/10.1016/j.pnucene.2022.104299
[5] Wang, F.; Wang, Y.; Chen, J.; Liao, Q.; Zhu, H.; Zhou, J.; Qu, X.; Gong, Z.; Fu, X.; Zhu, Y. Effect of Cerium Oxide on Phase Composition, Structure, Thermal Stability and Aqueous Durability of Sodium-Iron-Boron-Phosphate Based Glasses. J. Nucl. Mater. 2021, 556, 153199. https://doi.org/10.1016/j.jnucmat.2021.153199
[6] Shapakidze, E.; Avaliani, M.; Nadirashvili, M.; Maisuradze, V.; Gejadze, I.; Petriashvili, T. Synthesis and Study of Properties of Geopolymer Materials Developed Using Local Natural Raw Materials and Industrial Waste. Chem. Chem. Technol. 2023, 17, 711–718. https://doi.org/10.23939/chcht17.04.711
[7] Wang, L.; Liang; T. Review Ceramics for High Level Radioactive Waste Solidification. J. Adv. Ceram. 2012, 1, 194–203. https://doi.org/10.1007/s40145-012-0019-8
[8] Kumar, N.; Aggarwal, N. Ceramics for High-Level Nuclear Waste Immobilization. AIP Conf. Proc. 2023, 2735, 020016. https://doi.org/10.1063/5.0141085
[9] Savvova, O.; Voronov, H.; Fesenko, O.; Riabinin, S.; Tymofieiev, V. High-Strength Glass-Ceramic Material with Low Temperature Formation. Chem. Chem. Technol. 2022, 16, 337–344. https://doi.org/10.23939/chcht16.02.337
[10] Kim, M.; Heo, J. Calcium-Borosilicate Glass-Ceramics Wasteforms to Immobilize Rare-Earth Oxide Wastes from Pyro-Processing. J. Nucl. Mater. 2015, 467, 224–228. https://doi.org/10.1016/j.jnucmat.2015.09.04
[11] Yang, L.; Zhu, Y.; Huo, J.; Cui, Z.; Zhang, X.; Dong, X.; Feng, J. Solubility and Valence Variation of Ce in Low-Alkali Borosilicate Glass and Glass Network Structure Analysis. Materials 2023, 16, 5063. https://doi.org/10.3390/ma16145063
[12] Fabian, M.; Gergely, F.; Osan, J.; Cendak, T.; Kesari, S.; Rao, R. Structural Investigation of Borosilicate Glasses Containing Lanthanide Ions. Sci. Rep. 2020, 10, 7835. https://doi.org/10.1038/s41598-020-64754-2
[13] Yang, J.H.; Park, H.-S.; Cho, Y.-Z. Al2O3-Containing Silver Phosphate Glasses as Hosting Matrices for Radioactive Iodine. J. Nucl. Sci. Technol. 2017, 54, 1330–1337. https://doi.org/10.1080/00223131.2017.1365025
[14] Pilania, R.K.; Dube, C.L. Matrices for Radioactive Waste Immobilization: A Review. Front. Mater. 2023, 10, 1236470. https://doi.org/10.3389/fmats.2023.1236470
[15] McCloy, J.; Goel, A. Glass-Ceramics for Nuclear-Waste Immobilization. MRS Bulletin 2017, 42, 233–240. https://doi.org/10.1557/mrs.2017.8
[16] Fu, L.; Engqvist, H.; Xia, W. Glass-Ceramics in Dentistry: A Review. Materials (Basel) 2020, 26, 1049. https://doi.org/10.3390/ma13051049
[17] Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides Containment in Nuclear Glasses: An Overview(Review). Radiochim. Acta 2017, 105, 927–959. https://doi.org/10.1515/ract-2016-2658
[18] Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117. https://doi.org/10.3390/su13084117
[19] Caurant, D.; Majérus, O. Glasses and Glass-Ceramics for Nuclear Waste Immobilization. In Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier Inc., 2021; pp 762–778. https://doi.org/10.1016/b978-0-12-818542-1.00090-4
[20] Gabelkov, S.V.; Logvinkov, D.S.; Saenko, S.Yu.; Tarasov, R.V.; Holomeev G.A. Poluchenie steklokeramicheskih i keramicheskih materialov dlya izolyacii radioaktivnyh othodov. Voprosy atomnoj nauki i tehniki 2003, 13, 172–174.
[21] Zhang, X.Y.; Yang, F.; Zhu, S.K.; Chen, X.; Qin, K.M.; Wang, T.S.; Peng, H.B. Influence of Ion Radiation on Leaching Behavior of Borosilicate Glass. J. Non-Cryst. Solids 2023, 602, 122091. https://doi.org/10.1016/j.jnoncrysol.2022.122
[22] Li, H.; Wu, L.; Wang, X.; Xu, D.; Teng, Y.; Li, Y. Crystallization Behavior and Microstructure of Barium Borosilicate Glass–Ceramics. Ceram. Int. 2015, 41, 15202–15207. https://doi.org/10.1016/j.ceramint.2015.08.095
[23] Savvova, O.V.; Voronov, G.K.; Babich, O.V.; Topchiy, V.L.; Fesenko, O.I.; Tymofieiev, V.D. Protective Impact Resistant Composite Materials Based on Aluminium-Silicate Glass-Ceramics. Funct. Mater. 2019, 26, 182–188. https://doi.org/10.15407/FM26.01.182
[24] Savvova, O.V.; Babich, O.V.; Fesenko, O.I.; Topchij, V.L.; Hristich, O.V. Rozrobka visokomicnih anortitovih sitaliv. Voprosy khimii i khimicheskoi tekhnologii 2019, 6, 190–196. https://doi.org/10.32434/0321-4095-2019-127-6-190-196
[25] Sayenko, S. Yu.; Svitlychnyi, Ye. O.; Shkuropatenko, V. A.; Zykova, A. V.; Ledovska, O. G.; Ledovska, L. M.; Kholomyeyev, G. O.; Myronova, A. G.; Odeychuk, M. O. Glass-Ceramic Matrices Based on Borosilicate and Phosphate Materials for the Immobilization of Radioactive Waste. Funct. Mater. 2020, 27, 39–45. https://doi.org/10.15407/fm27.01.39
[26] Liu, J.; Wang, F.; Liao, Q.; Zhu, H.; Liu, D.; Zhu, Y. Synthesis and Characterization of Phosphate-Based Glass-Ceramics for Nuclear Waste Immobilization: Structure, Thermal Behavior, and Chemical Stability. J. Nucl. Mater. 2019, 513, 251–259. https://doi.org/10.1016/j.jnucmat.2018.11.002
[27] Loiseau, P.; Caurant, D. Glass-Ceramic Nuclear Waste Forms Obtained by Crystallization of SiO2 -Al2O3 -CaO-ZrO2 -TiO2 Glasses Containing Lanthanides (Ce, Nd, Eu, Gd, Yb) and Actinides (Th): Study of the Crystallization from the Surface. J. Nucl. Mater. 2010, 402, 38–54. https://doi.org/10.1016/j.jnucmat.2010.04.0
[28] ASTM C1285-21 Standard Test Methods for Determining Chemical Durability of Nuclear, Hazardous, and Mixed Waste Glasses and Multiphase Glass Ceramics: The Product Consistency Test (PCT) (accessed 2024-08-25).
[29] Savvova, O.V.; Shimon, V.M.; Babich, O.V.; Fesenko, O.I. Development of Calcium Phosphate-Silicate Glass Ceramic Materials Resistant to Biochemical and Mechanical Destruction. Funct. Mater. 2020, 27, 767–773. https://doi.org/10.15407/fm27.04.767
[30] Savvova, O.; Shadrina, G.; Babich, O.; Fesenko, О. Investigation of Surface Free Energy of the Glass Ceramic Coatings on Titanium for Medical Purposes. Chem. Chem. Technol. 2015, 9, 349–354. https://doi.org/10.23939/chcht09.03.349