Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Influence of σ Donation and π Acceptance Properties of Spectator Ligands on Substitution Reactions in Bifunctional Mononuclear Platinum(II) Complexes: Exploring Reactivity Pattern of Antitumor Compound

Parnajyoti Karmakar
Affiliation: 
1 Department of Chemistry, Hooghly Mohsin College, P.O. - Chinsurah, Dist.- Hooghly, West Bengal, India – 712101 parnajyoti@gmail.com
DOI: 
https://doi.org/10.23939/chcht19.01.020
AttachmentSize
PDF icon full_text.pdf384.52 KB
Abstract: 
Kinetics and mechanism of ligand substitution reactions on square planar platinum (II) complexes have been explored continuously over the last few decades. This was after the fortuitous discovery of the antiproliferative activity of cisplatin by Barnett Rosenberg in 1965, which attracted much attention from various other investigators to design new Pt(II) drugs with better activity and fewer side effects. Cisplatin's clinical success as a chemotherapeutic drug has promoted the discovery of succeeding generations with efficacy and less toxicity. The focal aim of these investigations was based on tailoring the steric and electronic properties of spectator ligands to influence the solubility, pKa, and molecular association or reactivity of the platinum complexes to promote the potential of the antitumor drugs. This mini-review provides accounts on: i) the mechanisms of substitution at the Pt(II) complexes in general and the key factors that control the reactivity, and ii) the trends in experimentally measured rate data and how they are controlled by varying the σ-donation and π-acceptance abilities of the spectator ligand. Furthermore, the reactivity patterns of platinum complexes are analyzed, highlighting how σ-donating and π-accepting ligands influence their biological activities. The insights gained from kinetic and mechanistic studies are essential for the development of more effective and less toxic platinum-based anticancer drugs.
References: 

[1] Basolo, F.; Pearson, R.G. Mechanism of Inorganic Reactions, A Study of Metal Complexes in Solutions, 2nd edition; John Wiely and sons, Inc.: New York, 1967.

[2] Wilkins, R.G. Kinetics and Mechanism of Reactions of Transition Metals, 2nd edition; VCH: Weinheim, 1991.
https://doi.org/10.1002/3527600825

[3] Atwood, J.D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997.

[4] Jordan, R.B. Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd edition; OUP: Oxford, 2007.
https://doi.org/10.1093/oso/9780195301007.003.0007

[5] Eldik, R. van; Hubbard, C. Inorganic reaction mechanisms, Vol. 70; Academic Press, 2017.

[6] Farrell, N. Biomedical Uses and Applications of Inorganic Chemistry. An Overview. Coord. Chem. Rev. 2002, 232, 1-4. https://doi.org/10.1016/S0010-8545(02)00100-5
https://doi.org/10.1016/S0010-8545(02)00100-5

[7] Torres, M. G.; Torres, C. M.; Torres, A. M.; Munoz, S. V.; Talavera, R. R.; Ruiz-Baltazar, A. de J.; Brostow, W. Validation of a Method to Quantify Platinum in Cisplatin by Inductively-Coupled Plasma. Chem. Chem. Technol. 2017, 11, 437-444. https://doi.org/10.23939/chcht11.04.437
https://doi.org/10.23939/chcht11.04.437

[8] Zhang, C.X.; Lippard, S.J. New Metal Complexes as Potential Therapeutics. Curr. Opin. Chem. Biol. 2003, 7, 481-489. https://doi.org/10.1016/S1367-5931(03)00081-4
https://doi.org/10.1016/S1367-5931(03)00081-4

[9] Tymoshuk, O.; Oleksiv, L.; Rydchuk, P.; Chaban, T.; Tymoshuk, S.; Matiychuk, V. Spectrophotometric Study of the Interaction of Platinum(IV) with New Derivatives of Azolidones. Chem. Chem. Technol. 2020, 14, 139-145. https://doi.org/10.23939/chcht14.02.139
https://doi.org/10.23939/chcht14.02.139

[10] Dabrowiak, J.C. Metals in Medicine, 2nd edition; John Wiley & Sons, Ltd., 2017.
https://doi.org/10.1002/9781119191377

[11] Casini, A.; Vessieres, A.; Meier-Menches, S.M. Metal-based anticancer agents; Royal Society of Chemistry, 2019.
https://doi.org/10.1039/9781788016452

[12] Rosenberg, B.; Camp, L.V.; Krigas, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698-699. https://doi.org/10.1038/205698a0
https://doi.org/10.1038/205698a0

[13] Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925. https://doi.org/10.1016/j.bioorg.2019.102925
https://doi.org/10.1016/j.bioorg.2019.102925

[14] Lippert, B. Cisplatin, Chemistry and biochemistry of a leading anticancer drug; Wiley-VCH, 1999.
https://doi.org/10.1002/9783906390420

[15] Kostova, I. Platinum Complexes as Anticancer Agents. Recent Pat. Anticancer Drug Discov. 2006, 1, 1-22. https://doi.org/10.2174/157489206775246458
https://doi.org/10.2174/157489206775246458

[16] Wilson, J.J.; Lippard, S.J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem. Rev. 2014, 114, 4470-4495. https://doi.org/10.1021/cr4004314
https://doi.org/10.1021/cr4004314

[17] Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018, 47, 6645-6653. https://doi.org/10.1039/C8DT00838H
https://doi.org/10.1039/C8DT00838H

[18] Reedjik, J. Platinum Anticancer Coordination Compounds: Study of DNA Binding Inspires New Drug Design, Eur. J. Inorg. Chem. 2009, 1283-1283. https://doi.org/10.1002/ejic.200900054
https://doi.org/10.1002/ejic.200900054

[19] Mahata, S.; Mukherjee, S.; Tarai, S.K.; Pan, A.; Mitra, I.; Pal, S.; Maitra, S.; Moi, S.C. Synthesis and Characterization of Pt(II)-based Potent Anticancer Agents with Minimum Normal Cell Toxicity: Their Bio-Activity and DNA-Binding Properties. New J. Chem. 2019, 43, 18767-18779. https://doi.org/10.1039/C9NJ03108A
https://doi.org/10.1039/C9NJ03108A

[20] Summa, N.; Soldatovic, T.; Dahlenburg, L.; Bugarcic, Z.D.; Eldik, R. van. The Impact of Different Chelating Leaving Groups on the Substitution Kinetics of Mononuclear PtII(1,2-trans-R,R-diaminocyclohexane)(X-Y) Complexes. J. Biol. Inorg. Chem. 2007, 12, 461-475. https://doi.org/10.1007/s00775-006-0200-z
https://doi.org/10.1007/s00775-006-0200-z

[21] Samanta, A.; Ghosh, G.K.; Mitra, I.; Mukherjee, S.; Bose, K. J.C.; Mukhopadhyay, S.; Linert, W.; Moi, S.C. Ligand Substitution Reaction on a Platinum(II) Complex with Bio-Relevant Thiols: Kinetics, Mechanism and Bioactivity in Aqueous Medium. RSC Adv. 2014, 4, 43516-43524. https://doi.org/10.1039/C4RA06137C
https://doi.org/10.1039/C4RA06137C

[22] Mahata, S.; Mukherjee, S.; Mitra, I.; Bhaduria, R.; Chandra, K.; Mandal, S.; Linert, W.; Moi, S.C. Influence of Steric and Electronic Effect of Carrier Ligand on Kinetics & Mechanism of Pt(II) Complexes with l-Cysteine and its Substituted Derivatives: Their Experimental and DFT-Based Theoretical Study. Inorganica Chim. Acta 2019, 498, 119117. https://doi.org/10.1016/j.ica.2019.119117
https://doi.org/10.1016/j.ica.2019.119117

[23] Taube, H. Rates and Mechanisms of Substitution in Inorganic Complexes in Solution. Chem. Rev. 1952, 50, 69-126. https://doi.org/10.1021/cr60155a003
https://doi.org/10.1021/cr60155a003

[24] Basolo, F. Retrospective on Studies of Ligand Substitution Reactions of Metal Complexes. Coord. Chem. Rev. 1990, 100, 47-66. https://doi.org/10.1016/0010-8545(90)85004-C
https://doi.org/10.1016/0010-8545(90)85004-C

[25] Basolo, F. Recollections of Early Studies on Platinum(II) Complexes Related to Chatt's Contributions to Coordination Chemistry. Coord. Chem. Rev. 1996, 154, 151-161. https://doi.org/10.1016/0010-8545(95)01137-4
https://doi.org/10.1016/0010-8545(95)01137-4

[26] Eldik, R. van; Ducker-Benefer, C.; Thaler, F. Inorganic and Bioinorganic Reaction Mechanisms: Application of High-Pressure Techniques. Adv. Inorg. Chem. 1999, 49, 1-58. https://doi.org/10.1016/S0898-8838(08)60268-8
https://doi.org/10.1016/S0898-8838(08)60268-8

[27] Cooper, J.; Ziegler, T. A Density Functional Study of SN2 Substitution at Square-Planar Platinum(II) Complexes. Inorg. Chem. 2002, 41, 6614-6622. https://doi.org/10.1021/ic020294k
https://doi.org/10.1021/ic020294k

[28] Richens, D.T. Ligand Substitution Reactions at Inorganic Centers. Chem. Rev. 2005, 105, 1961-2002. https://doi.org/10.1021/cr030705u
https://doi.org/10.1021/cr030705u

[29] Ford, P.C. Inorganic Reaction Mechanisms: An Issue in Honor of Henry Taube. Coord. Chem. Rev. 2005, 249, 273. https://doi.org/10.1016%2Fj.ccr.2004.09.018
https://doi.org/10.1016/j.ccr.2004.09.018

[30] Bugarčić, Ž.D.; Bogojeski, J.; Eldik, R. van. Kinetics, Mechanism and Equilibrium Studies on the Substitution Reactions of Pd(II) in Reference to Pt(II) Complexes with Bio-Molecules. Coord. Chem. Rev. 2015, 292, 91-106. https://doi.org/10.1016/j.ccr.2015.02.016
https://doi.org/10.1016/j.ccr.2015.02.016

[31] Hubbard, C.D.; Chatterjee, D.; Oszajca, M.; Polaczek, J.; Impert, O.; Chrzanowska, M.; Katafias, A.; Puchta, R.; Eldik, R. van. Inorganic Reaction Mechanisms. A Personal Journey. Dalton Trans. 2020, 49, 4599-4659. https://doi.org/10.1039/C9DT04620H
https://doi.org/10.1039/C9DT04620H

[32] Whitmore, G. Advance Inorganic Reaction Mechanism, 1st edition; Ivy Publishing House, 2010.

[33] Das, A.K.; Das, M. Fundamental Concepts of Inorganic Chemistry, 1st Edition, Vol. 5; CBS Publishers & Distributors Pvt. Ltd., 2014.

[34] Bugarčić, Ž.D., Bogojeski, J., Petrović, B., Hochreuther, S., Eldik, R. van. Mechanistic Studies on the Reactions of Platinum(II) Complexes with Nitrogen- and Sulfur-Donor Biomolecules. Dalton Trans. 2012, 41, 12329-12345. https://doi.org/10.1039/C2DT31045G
https://doi.org/10.1039/c2dt31045g

[35] Ortuño, M.A.; Conejero, S.; Lledós, A. True and Masked Three-Coordinate T-Shaped Platinum(II) Intermediates. Beilstein J. Org. Chem. 2013, 9, 1352-1382. https://doi.org/10.3762/bjoc.9.153
https://doi.org/10.3762/bjoc.9.153

[36] Sajith, P.K.; Suresh, C.H. Mechanisms of Reductive Eliminations in Square Planar Pd(II) Complexes: Nature of Eliminated Bonds and Role of Trans Influence. Inorg. Chem. 2011, 50, 8085-8093. https://doi.org/10.1021/ic2004563
https://doi.org/10.1021/ic2004563

[37] Lanza, S.; Minniti, D.; Moore, P.; Sachinidis, J.; Romeo, R.; Tobe, M.L. Dissociative Substitution in Four-Coordinate Planar Platinum(II) Complexes. Kinetics of Sulfoxide Exchange and Displacement by Bidentate Ligands in the Reactions of cis-Diarylbis(dimethyl sulfoxide)platinum(II) in Chloroform and Benzene. Inorg. Chem. 1984, 23, 4428-4433. https://doi.org/10.1021/ic00194a006
https://doi.org/10.1021/ic00194a006

[38] Amatore, C.; Jutand, A.; Suarez, A. Intimate Mechanism of Oxidative Addition to Zerovalent Palladium Complexes in the Presence of Halide Ions and its Relevance to the Mechanism of Palladium-Catalyzed Nucleophilic Substitutions. J. Am. Chem. Soc. 1993, 115, 9531-9541. https://doi.org/10.1021/ja00074a018
https://doi.org/10.1021/ja00074a018

[39] Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic Chemistry - Principles of structure & Reactivity; Pearson Education, Inc, 2005.

[40] Basolo, F.; Gray, H.B.; Pearson, R.G. Mechanism of Substitution Reactions of Complex Ions. XVII.1 Rates of Reaction of Some Platinum(II) and Palladium(II) Complexes with Pyridine. J. Am. Chem. Soc. 1960, 82, 4200-4203. https://doi.org/10.1021/ja01501a021
https://doi.org/10.1021/ja01501a021

[41] Basolo, F.; Chatt, J.; Gray, H.B.; Pearson, R.G.; Shaw, B.L. Kinetics of the Reaction of Alkyl and Aryl Compounds of the Nickel Group with Pyridine. J. Chem. Soc. (Resumed) 1961, 2207-2215. https://doi.org/10.1039/JR9610002207
https://doi.org/10.1039/jr9610002207

[42] Gray, H.B. Rates of Some Substitution Reactions of Platinum(II) Complexes. J. Am. Chem. Soc. 1962, 84, 1548-1552. https://doi.org/10.1021/ja00868a008
https://doi.org/10.1021/ja00868a008

[43] Cheeseman, T.P.; Odell, A.L.; Raethel, H.A. Trans-Effect Order for Alkene, Alkyne, Phosphine, Arsine, Stibine, and Sulphide Ligands from Studies of Diethylamine Exchange Reactions of L,PtCl2,[14C]NHEt2 in Various Solvents. Chem. Commun. 1968, 1496-1498. https://doi.org/10.1039/C19680001496
https://doi.org/10.1039/c19680001496

[44] Hay, R.W. Reaction mechanism of metal complexes; Horwood Publishing Ltd., 2000.
https://doi.org/10.1533/9781782420637

[45] Belluco, U.; Cattalini, L.; Basolo, F.; Pearson, R.G.; Turco, A. Nucleophilic Constants and Substrate Discrimination Factors for Substitution Reactions of Platinum(II) Complexes. J. Am. Chem. Soc. 1965, 87, 241-246. https://doi.org/10.1021/ja01080a019
https://doi.org/10.1021/ja01080a019

[46] Gray, H.B.; Olcott, R.J. Kinetics of the Reactions of Diethylenetriamineaquoplatinum(II) Ion with Different Ligands. Inorg. Chem. 1962, 1, 481-485. https://doi.org/10.1021/ic50003a007
https://doi.org/10.1021/ic50003a007

[47] Langford, C.H.; Gray, H.B. Ligand substitution process; W. A. Benjamin, Inc., 1966.

[48] Basolo, F.; Pearson, R.G. Mechanism of inorganic reactions, Chapter 4; Wiley: New York, 1958.

[49] Xu, Z.; Wang, Z.; Deng, Z.; Zhu, G. Recent Advances in the Synthesis, Stability, and Activation of Platinum(IV) Anticancer Prodrugs. Coord. Chem. Rev. 2021, 442, 213991. https://doi.org/10.1016/j.ccr.2021.213991
https://doi.org/10.1016/j.ccr.2021.213991

[50] Gosling, R.; Tobe, M.L. Kinetics of the Reversible Displacement of Chloride by Amines under the Trans Effect of Phosphines, Phosphites, and Arsines. Inorg. Chem. 1983, 22, 1235-1244. https://doi.org/10.1021/ic00150a019
https://doi.org/10.1021/ic00150a019

[51] Chval, Z.; Sip, M.; Burda, J.V. The Trans Effect in Square-Planar Platinum(II) Complexes-A Density Functional Study. J. Comput. Chem. 2008, 29, 2370-2381. https://doi.org/10.1002/jcc.20980
https://doi.org/10.1002/jcc.20980

[52] Tobe, M.L. Inorganic reaction mechanism; Nelson: London, 1972.

[53] Banerjea, D. Coordination chemistry, 3rd edition; Asian Books, 2009.

[54] Lo, W. K. C.; Cavigliasso, G.; Stranger, R., Crowley, J. D.; Blackman, A. G. Five-Coordinate [PtII(bipyridine)2(phosphine)]n+ Complexes: Long-lived Intermediates in Ligand Substitution Reactions of [Pt(bipyridine)2]2+ with Phosphine Ligands. Inorg. Chem. 2014, 53, 3595-3605. https://doi.org/10.1021/ic403089j
https://doi.org/10.1021/ic403089j

[55] Favez, R.; Roulet, R. The System PdX2(PMe3)2 and Trimethylphosphine in Dichloromethane Solution as Studied by Phosphorus-31 Nuclear Magnetic Resonance. Inorg. Chem. 1981, 20, 1598-1601. https://doi.org/10.1021/ic50219a052
https://doi.org/10.1021/ic50219a052

[56] Holt, M.S.; Nelson, J.H.; Alcock, N.W. Four- and Five-Coordinate Platinum Complexes of Divinylphenylphosphine. Inorg. Chem. 1986, 25, 2288-2295. https://doi.org/10.1021/ic00234a003
https://doi.org/10.1021/ic00234a003

[57] Helm, L.; Elding, L.I.; Merbach, A.E. High-Pressure NMR Kinetics. 21. Activation Parameters and Mechanism for Water Exchange of Tetraaquaplatinum(II) Studied by High-Pressure Oxygen-17 NMR Spectroscopy. Inorg. Chem. 1985, 24, 1719-1721. https://doi.org/10.1021/ic00205a026
https://doi.org/10.1021/ic00205a026

[58] Rimm, W.R.; Johnston, D.O.; Oestreich, C.H.; Lambert, D.G.; Jones, M.M. The Reaction of [Pt(dien)Br]+ with a Series of Pyridine Derivatives. J. Inorg. Nucl. Chem. 1967, 29, 2401-2409. https://doi.org/10.1016/0022-1902(67)80297-5
https://doi.org/10.1016/0022-1902(67)80297-5

[59] Romeo, R. Dissociative Pathways in Platinum(II) Chemistry. Comments Inorg. Chem. 1990, 11, 21-57. https://doi.org/10.1080/02603599008035817
https://doi.org/10.1080/02603599008035817

[60] Romeo, R.; Scolaro, L.M.; Plutino, M.R.; Biani, F.F. de; Bottari, G.; Romeo, A. Ligand Exchange and Substitution at Platinum (II) Complexes: Evidence for a Dissociative Mechanism. Inorganica Chim. Acta 2003, 350, 143-151. https://doi.org/10.1016/S0020-1693(02)01505-0
https://doi.org/10.1016/S0020-1693(02)01505-0

[61] Plutino, M.R.; Scolaro, L.M.; Romeo, R.; Grassi, A. To What Extent Can Cyclometalation Promote Associative or Dissociative Ligand Substitution at Platinum(II) Complexes? A Combined Kinetic and Theoretical Approach. Inorg. Chem. 2000, 39, 2712-2720. https://doi.org/10.1021/ic9914894
https://doi.org/10.1021/ic9914894

[62] Schmuling, M.; Eldik, R. van. Kinetics and Mechanism of Substitution Reactions of cis-[PtMe2(dmso)2] with Pyridine. Chem. Ber./Recl. 1997, 130, 1791-1799. https://doi.org/10.1002/cber.19971301214
https://doi.org/10.1002/cber.19971301214

[63] Matsumoto, S.; Kawaguchi, S. Kinetics and Equilibrium of the Reaction between Bis(trifluoroacetylacetonato)palladium(II) and Tri-o-tolylphosphine. Bull. Chem. Soc. Jan. 1981, 54, 1704-1707. https://doi.org/10.1246/bcsj.54.1704
https://doi.org/10.1246/bcsj.54.1704

[64] Okeya, S.; Sazaki, H.; Ogita, M.; Takemoto, T.; Onuki, Y.; Nakamura, Y.; Mohapatra, B.K.; Kawaguchi, S. Reactions of the Bis(β-diketonato)palladium(II) Complexes with Various Nitrogen Bases. Bull. Chem. Soc. Jan. 1981, 54, 1978-1994. https://doi.org/10.1246/bcsj.54.1978
https://doi.org/10.1246/bcsj.54.1978

[65] Okeya, S.; Nakamura, Y.; Kawaguchi, S. Reactions of Bis(β-diketonato)palladium(II) and Platinum(II) with Tertiary Phosphines. Bull. Chem. Soc. Jan. 1981, 54, 3396-3408. https://doi.org/10.1246/bcsj.54.3396
https://doi.org/10.1246/bcsj.54.3396

[66] Cross, R.J. Mechanisms of Inorganic and Organometallic Reactions; Twigg, M.V., Ed.; Chapter 5; Plenum: New York, 1988.

[67] Khan, H. Y.; Ansari, M. F.; Tabassum, S.; Arjmand, F. A Review on the Recent Advances of Interaction Studies of Anticancer Metal-Based Drugs with Therapeutic Targets, DNA and RNAs. Drug Discov. Today 2024, 104055. https://doi.org/10.1016/j.drudis.2024.104055
https://doi.org/10.1016/j.drudis.2024.104055

[68] Lucaciu, R. L.; Hangan, A. C.; Sevastre, B.; Oprean, L. S. Metallo-Drugs in Cancer Therapy: Past, Present and Future. Molecules 2022, 27, 6485. https://doi.org/10.3390/molecules27196485
https://doi.org/10.3390/molecules27196485

[69] Arjmand, F.; Khan, H. Y.; Tabassum, S. Progress of Metal-Based Anticancer Chemotherapeutic Agents in Last two Decades and their Comprehensive Biological (DNA/RNA Binding, Cleavage and Cytotoxicity Activity) Studies. Chem. Rec. 2023, 23, e202200247. https://doi.org/10.1002/tcr.202200247
https://doi.org/10.1002/tcr.202200247

[70] Dasari, S.; Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1016/j.ejphar.2014.07.025

[71] Coffetti, G.; Moraschi, M.; Facchetti, G.; Rimoldi, I. The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules 2023, 28, 3407. https://doi.org/10.3390/molecules28083407
https://doi.org/10.3390/molecules28083407

[72] Gasior-Glogowska, M.; Malek, K.; Zajac, G.; Baransa, M. A New Insight into the Interaction of Cisplatin with DNA: ROA Spectroscopic Studies on the Therapeutic Effect of the Drug. Analyst. 2016, 141, 291-296. https://doi.org/10.1039/C5AN02140E
https://doi.org/10.1039/C5AN02140E

[73] Dasari, S. Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
https://doi.org/10.1016/j.ejphar.2014.07.025

[74] Nakamura, T.; Yonezowa, A.; Hashimoto, S.; Katsura, T.; Inui, K. Disruption of Multidrug and Toxin Extrusion MATE1 Potentiates Cisplatin-Induced Nephrotoxicity. Biochem. Pharmacol. 2010, 80, 1762-1767. https://doi.org/10.1016/j.bcp.2010.08.019
https://doi.org/10.1016/j.bcp.2010.08.019

[75] Zoń, A.; Bednarek, I. Cisplatin in Ovarian Cancer Treatment-Known Limitations in Therapy Force New Solutions. Int. J. Mol. Sci. 2023, 24, 7585. https://doi.org/10.3390/ijms24087585
https://doi.org/10.3390/ijms24087585

[76] Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-Based Drugs for Cancer Therapy and Anti-Tumor Strategies. Theranostics 2022, 12, 2115-2132. https://www.thno.org/v12p2115.htm
https://doi.org/10.7150/thno.69424

[77] Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436-3486. https://doi.org/10.1021/acs.chemrev.5b00597
https://doi.org/10.1021/acs.chemrev.5b00597

[78] Maret, W.; Wedd, A. Binding transport and storage of metal ions in biological cells; Royal Society of Chemistry, 2014.
https://doi.org/10.1039/9781849739979

[79] Marques, M.P.M. Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor. ISRN Spectroscopy 2013, 2013, 1. https://doi.org/10.1155/2013/287353
https://doi.org/10.1155/2013/287353

[80] Marques, M.P.M.; Gianolio, D.; Cibin, G.; Tomkinson, J.; Parker, S.F.; Valero, R.; Lopes, R.P.; Carvalho, L. A.E.B. de. A Molecular View of Cisplatin's Mode of Action: Interplay with DNA Bases and Acquired Resistance. Phys. Chem. Chem. Phys. 2015, 17, 5155-5171. https://doi.org/10.1039/C4CP05183A
https://doi.org/10.1039/C4CP05183A

[81] Johnstone, T.C.; Park, G.A.Y.; Lippard, S.J. Understanding and Improving Platinum Anticancer Drugs - Phenanthriplatin. Anticancer Res. 2014, 34, 471-476. https://ar.iiarjournals.org/content/34/1/471/tab-article-info

[82] Karmakar, P.; Bera, B.K.; Barik, K.L.; Mukhopadhyay, S.K.; Ghosh, A.K. Kinetics and Mechanism of the Interaction of DL-Penicillamine with cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) Perchlorate in Aqueous Medium. J. Coord. Chem. 2010, 63, 2158-2171. https://doi.org/10.1080/00958972.2010.498910
https://doi.org/10.1080/00958972.2010.498910

[83] Karmakar, P.; Mallick, S.; Bera, B.K.; Mandal, A.; Mondal, S.; Mukhopadhyay, S.K.; Ghosh, A.K. Mechanistic Aspects of Ligand Substitution on cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) by Glycine-L-Leucine. Transit Metal Chem. 2010, 35, 911-916. https://doi.org/10.1007/s11243-010-9411-9
https://doi.org/10.1007/s11243-010-9411-9

[84] Karmakar, P.; Mallick, S.; Mondal, S.; Bera, B.K.; Mandal, A.; Mukhopadhyay, S.K.; Ghosh, A.K. Kinetics and Mechanism of the Interaction of Adenosine with cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) Perchlorate in Aqueous Medium. Int. J. Chem. Kinet. 2011, 43, 219-229. https://doi.org/10.1002/kin.20549
https://doi.org/10.1002/kin.20549

[85] Karmakar, P.; Ray, S.; Nandi, D.; Mandal, A.; Mondal, S.; Mallick, S.; Bera, B.K.; Ghosh, A.K. Kinetic Studies on Interaction of Platinum(II) Complexes with an 'S' Containing Ligand in Aqueous Medium. J. Solution Chem. 2013, 42, 441-458. https://doi.org/10.1007/s10953-013-9969-x
https://doi.org/10.1007/s10953-013-9969-x

[86] Karmakar, P.; Ray, S.; Mandal, A.; Mondal, S.; Mallick, S.; Bera, B.K.; Ghosh, A.K. Mechanistic and Kinetic Investigations on the Interaction of Model Platinum(II) Complex with Ligands of Biological Significance in Reference to the Antitumor Activity. Syn. React. Inorg. Metaorg. Nanometal Chem. 2013, 43, 1563-1570. https://doi.org/10.1080/15533174.2013.763272
https://doi.org/10.1080/15533174.2013.763272

[87] Karmakar, P.; Ray, S.; Mallick, S.; Bera, B.K.; Mandal, A.; Mondal, S.; Ghosh, A.K. Kinetics and Mechanism of Interaction of Some Bioactive Ligands with cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) in Aqueous Medium. J. Chem. Sci. 2013, 125, 1133-1143. https://doi.org/10.1007/s12039-013-0455-1
https://doi.org/10.1007/s12039-013-0455-1

[88] Karmakar, P. The Effect of σ-Donation on the Interactions of cis-Diaqua(2-aminomethylpiperidine)platinum(II) Complex with Biomolecules in Aqueous Medium: Synthesis, Kinetic and Mechanistic Study. Transit. Met. Chem. 2014, 39, 727-733. https://doi.org/10.1007/s11243-014-9832-y
https://doi.org/10.1007/s11243-014-9832-y

[89] Summa, N.; Schiessl, W.; Puchta, R.; Hommes, N. van. E.; Eldik, R. van. Thermodynamic and Kinetic Studies on Reactions of Pt(II) Complexes with Biologically Relevant Nucleophiles. Inorg. Chem. 2006, 45, 2948-2959. https://doi.org/10.1021/ic051955r
https://doi.org/10.1021/ic051955r

[90] Bera, S.K.; Chandra, S.K.; De, G.S. Substitution of Aqua Ligands from cis-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = N N′-dimethyl ethylenediamine) by Glycine in Aqueous Medium-A Kinetic and Mechanistic Approach. Int. J. Chem. Kinet. 2005, 37, 489-495. https://doi.org/10.1002/kin.20095
https://doi.org/10.1002/kin.20095

[91] Nandi, D.; Ray, S.; Laskar, S.; Ghosh, A.K. Mechanistic Aspects of the Ligand Substitution Reaction of Diaquaethylenediamine-Platinum (II) Ion with 2-Thiouracil in Aqueous Medium. J. Indian Chem. Soc. 2013, 90, 913-920. https://doi.org/10.5281/zenodo.5773987

[92] Nandi, D.; Karmakar, P.; Ray, S.; Chattopadhyay A.; Sarkar (Sain), R.; Ghosh, A.K. Kinetics and Mechanism for Ligand Substitution Reactions of Some Square-Planar Platinum(II) Complexes: Stability and Reactivity Correlations. Inorg. Nano-Met. 2018, 48, 16-22. https://doi.org/10.1080/24701556.2017.1357594
https://doi.org/10.1080/24701556.2017.1357594

[93] Fekl, U.; Eldik, R. van. Specific Chelate Tuning of the Substitution Kinetics of Platinum(II) Complexes in Aqueous Solution. Eur. J. Inorg. Chem. 1998, 1998, 389-396. https://doi.org/10.1002/(SICI)1099-0682(199803)1998:3%3C389::AID-EJIC389%3E3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1099-0682(199803)1998:3<389::AID-EJIC389>3.3.CO;2-H

[94] Hofmann, A.; Jaganyi, D.; Munro, O.Q.; Liehr, G.; Eldik, R. van. Electronic Tuning of the Lability of Pt(II) Complexes Through π-Acceptor Effects. Correlations between Thermodynamic, Kinetic, and Theoretical Parameters. Inorg. Chem. 2003, 42, 1688-1700. https://doi.org/10.1021/ic020605r
https://doi.org/10.1021/ic020605r

[95] Mukherjee, S.; Reddy, B. V.P.; Mitra, I.; Saha, R.; Bose, K. J.C.; Reddy, K.S.; Dodda, S.R.; Linert, W.; Moi, S.C. In vitro Model Reaction of Sulfur Containing Bio-Relevant Ligands with Pt(II) Complex: Kinetics, Mechanism, Bioactivity and Computational Studies. RSC Adv. 2015, 5, 76987-76999. https://doi.org/10.1039/C5RA15740D
https://doi.org/10.1039/C5RA15740D

[96] Mukhopadhyay, S.K. Kinetics and Mechanism of Aqua Ligand Substitution from cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II)perchlorate by Diethyldithiocarbamate Anion in Aqueous Medium. Transit. Met. Chem. 2008, 33, 739-743. https://doi.org/10.1007/s11243-008-9105-8
https://doi.org/10.1007/s11243-008-9105-8

[97] Schmulling, M.; Grove, D.M.; Koten, G. van.; Eldik, R. van.; Veldman, N.; Spek, A.L. Comparative Rates of Ligand Substitution Reactions of Pt−C-Bonded Complexes in Aqueous Solution and the X-ray Crystal Structure of [Pt{C6H3(CH2NMe2)2-2,6}(OH2)][OSO2CF3]. Organometallics 1996, 15, 1384-1391. https://doi.org/10.1021/om950474k
https://doi.org/10.1021/om950474k

[98] Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal Complexes in Cancer Therapy - An Update from Drug Design Perspective. Drug. Des. Devel. Ther. 2017, 11, 599-616. https://doi.org/10.2147/DDDT.S119488
https://doi.org/10.2147/DDDT.S119488

[99] Palermo, G.; Spinello, A.; Saha, A.; Magistrato, A. Frontiers of Metal-Coordinating Drug Design. Expert Opin. Drug Discov. 2021, 16, 497-511. https://doi.org/10.1080/17460441.2021.1851188
https://doi.org/10.1080/17460441.2021.1851188