Вплив σ-донорних і π-акцепторних властивостей лігандів-спектаторів на реакції заміщення в біфункціональних мононуклеарних комплексах платини (іі): дослідження закономірностей реакційної здатності протипухлинних сполук
Attachment | Size |
---|---|
![]() | 384.52 KB |
Keywords:
[1] Basolo, F.; Pearson, R.G. Mechanism of Inorganic Reactions, A Study of Metal Complexes in Solutions, 2nd edition; John Wiely and sons, Inc.: New York, 1967.
[2] Wilkins, R.G. Kinetics and Mechanism of Reactions of Transition Metals, 2nd edition; VCH: Weinheim, 1991.
[3] Atwood, J.D. Inorganic and Organometallic Reaction Mechanisms; VCH: New York, 1997.
[4] Jordan, R.B. Reaction Mechanisms of Inorganic and Organometallic Systems, 3rd edition; OUP: Oxford, 2007.
[5] Eldik, R. van; Hubbard, C. Inorganic reaction mechanisms, Vol. 70; Academic Press, 2017.
[6] Farrell, N. Biomedical Uses and Applications of Inorganic Chemistry. An Overview. Coord. Chem. Rev. 2002, 232, 1–4. https://doi.org/10.1016/S0010-8545(02)00100-5
[7] Torres, M. G.; Torres, C. M.; Torres, A. M.; Munoz, S. V.; Talavera, R. R.; Ruiz-Baltazar, A. de J.; Brostow, W. Validation of a Method to Quantify Platinum in Cisplatin by Inductively-Coupled Plasma. Chem. Chem. Technol. 2017, 11, 437–444. https://doi.org/10.23939/chcht11.04.437
[8] Zhang, C.X.; Lippard, S.J. New Metal Complexes as Potential Therapeutics. Curr. Opin. Chem. Biol. 2003, 7, 481–489. https://doi.org/10.1016/S1367-5931(03)00081-4
[9] Tymoshuk, O.; Oleksiv, L.; Rydchuk, P.; Chaban, T.; Tymoshuk, S.; Matiychuk, V. Spectrophotometric Study of the Interaction of Platinum(IV) with New Derivatives of Azolidones. Chem. Chem. Technol. 2020, 14, 139–145. https://doi.org/10.23939/chcht14.02.139
[10] Dabrowiak, J.C. Metals in Medicine, 2nd edition; John Wiley & Sons, Ltd., 2017.
[11] Casini, A.; Vessieres, A.; Meier-Menches, S.M. Metal-based anticancer agents; Royal Society of Chemistry, 2019.
[12] Rosenberg, B.; Camp, L.V.; Krigas, T. Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205, 698–699. https://doi.org/10.1038/205698a0
[13] Ghosh, S. Cisplatin: The First Metal Based Anticancer Drug. Bioorg. Chem. 2019, 88, 102925. https://doi.org/10.1016/j.bioorg.2019.102925
[14] Lippert, B. Cisplatin, Chemistry and biochemistry of a leading anticancer drug; Wiley-VCH, 1999.
[15] Kostova, I. Platinum Complexes as Anticancer Agents. Recent Pat. Anticancer Drug Discov. 2006, 1, 1–22. https://doi.org/10.2174/157489206775246458
[16] Wilson, J.J.; Lippard, S.J. Synthetic Methods for the Preparation of Platinum Anticancer Complexes. Chem. Rev. 2014, 114, 4470–4495. https://doi.org/10.1021/cr4004314
[17] Oun, R.; Moussa, Y.E.; Wheate, N.J. The Side Effects of Platinum-Based Chemotherapy Drugs: A Review for Chemists. Dalton Trans. 2018, 47, 6645–6653. https://doi.org/10.1039/C8DT00838H
[18] Reedjik, J. Platinum Anticancer Coordination Compounds: Study of DNA Binding Inspires New Drug Design, Eur. J. Inorg. Chem. 2009, 1283–1283. https://doi.org/10.1002/ejic.200900054
[19] Mahata, S.; Mukherjee, S.; Tarai, S.K.; Pan, A.; Mitra, I.; Pal, S.; Maitra, S.; Moi, S.C. Synthesis and Characterization of Pt(II)-based Potent Anticancer Agents with Minimum Normal Cell Toxicity: Their Bio-Activity and DNA-Binding Properties. New J. Chem. 2019, 43, 18767–18779. https://doi.org/10.1039/C9NJ03108A
[20] Summa, N.; Soldatovic, T.; Dahlenburg, L.; Bugarcic, Z.D.; Eldik, R. van. The Impact of Different Chelating Leaving Groups on the Substitution Kinetics of Mononuclear PtII(1,2-trans-R,R-diaminocyclohexane)(X–Y) Complexes. J. Biol. Inorg. Chem. 2007, 12, 461–475. https://doi.org/10.1007/s00775-006-0200-z
[21] Samanta, A.; Ghosh, G.K.; Mitra, I.; Mukherjee, S.; Bose, K. J.C.; Mukhopadhyay, S.; Linert, W.; Moi, S.C. Ligand Substitution Reaction on a Platinum(II) Complex with Bio-Relevant Thiols: Kinetics, Mechanism and Bioactivity in Aqueous Medium. RSC Adv. 2014, 4, 43516–43524. https://doi.org/10.1039/C4RA06137C
[22] Mahata, S.; Mukherjee, S.; Mitra, I.; Bhaduria, R.; Chandra, K.; Mandal, S.; Linert, W.; Moi, S.C. Influence of Steric and Electronic Effect of Carrier Ligand on Kinetics & Mechanism of Pt(II) Complexes with l-Cysteine and its Substituted Derivatives: Their Experimental and DFT-Based Theoretical Study. Inorganica Chim. Acta 2019, 498, 119117. https://doi.org/10.1016/j.ica.2019.119117
[23] Taube, H. Rates and Mechanisms of Substitution in Inorganic Complexes in Solution. Chem. Rev. 1952, 50, 69–126. https://doi.org/10.1021/cr60155a003
[24] Basolo, F. Retrospective on Studies of Ligand Substitution Reactions of Metal Complexes. Coord. Chem. Rev. 1990, 100, 47–66. https://doi.org/10.1016/0010-8545(90)85004-C
[25] Basolo, F. Recollections of Early Studies on Platinum(II) Complexes Related to Chatt's Contributions to Coordination Chemistry. Coord. Chem. Rev. 1996, 154, 151–161. https://doi.org/10.1016/0010-8545(95)01137-4
[26] Eldik, R. van; Ducker-Benefer, C.; Thaler, F. Inorganic and Bioinorganic Reaction Mechanisms: Application of High-Pressure Techniques. Adv. Inorg. Chem. 1999, 49, 1–58. https://doi.org/10.1016/S0898-8838(08)60268-8
[27] Cooper, J.; Ziegler, T. A Density Functional Study of SN2 Substitution at Square-Planar Platinum(II) Complexes. Inorg. Chem. 2002, 41, 6614–6622. https://doi.org/10.1021/ic020294k
[28] Richens, D.T. Ligand Substitution Reactions at Inorganic Centers. Chem. Rev. 2005, 105, 1961–2002. https://doi.org/10.1021/cr030705u
[29] Ford, P.C. Inorganic Reaction Mechanisms: An Issue in Honor of Henry Taube. Coord. Chem. Rev. 2005, 249, 273. https://doi.org/10.1016%2Fj.ccr.2004.09.018
[30] Bugarčić, Ž.D.; Bogojeski, J.; Eldik, R. van. Kinetics, Mechanism and Equilibrium Studies on the Substitution Reactions of Pd(II) in Reference to Pt(II) Complexes with Bio-Molecules. Coord. Chem. Rev. 2015, 292, 91–106. https://doi.org/10.1016/j.ccr.2015.02.016
[31] Hubbard, C.D.; Chatterjee, D.; Oszajca, M.; Polaczek, J.; Impert, O.; Chrzanowska, M.; Katafias, A.; Puchta, R.; Eldik, R. van. Inorganic Reaction Mechanisms. A Personal Journey. Dalton Trans. 2020, 49, 4599–4659. https://doi.org/10.1039/C9DT04620H
[32] Whitmore, G. Advance Inorganic Reaction Mechanism, 1st edition; Ivy Publishing House, 2010.
[33] Das, A.K.; Das, M. Fundamental Concepts of Inorganic Chemistry, 1st Edition, Vol. 5; CBS Publishers & Distributors Pvt. Ltd., 2014.
[34] Bugarčić, Ž.D., Bogojeski, J., Petrović, B., Hochreuther, S., Eldik, R. van. Mechanistic Studies on the Reactions of Platinum(II) Complexes with Nitrogen- and Sulfur-Donor Biomolecules. Dalton Trans. 2012, 41, 12329–12345. https://doi.org/10.1039/C2DT31045G
[35] Ortuño, M.A.; Conejero, S.; Lledós, A. True and Masked Three-Coordinate T-Shaped Platinum(II) Intermediates. Beilstein J. Org. Chem. 2013, 9, 1352–1382. https://doi.org/10.3762/bjoc.9.153
[36] Sajith, P.K.; Suresh, C.H. Mechanisms of Reductive Eliminations in Square Planar Pd(II) Complexes: Nature of Eliminated Bonds and Role of Trans Influence. Inorg. Chem. 2011, 50, 8085–8093. https://doi.org/10.1021/ic2004563
[37] Lanza, S.; Minniti, D.; Moore, P.; Sachinidis, J.; Romeo, R.; Tobe, M.L. Dissociative Substitution in Four-Coordinate Planar Platinum(II) Complexes. Kinetics of Sulfoxide Exchange and Displacement by Bidentate Ligands in the Reactions of cis-Diarylbis(dimethyl sulfoxide)platinum(II) in Chloroform and Benzene. Inorg. Chem. 1984, 23, 4428–4433. https://doi.org/10.1021/ic00194a006
[38] Amatore, C.; Jutand, A.; Suarez, A. Intimate Mechanism of Oxidative Addition to Zerovalent Palladium Complexes in the Presence of Halide Ions and its Relevance to the Mechanism of Palladium-Catalyzed Nucleophilic Substitutions. J. Am. Chem. Soc. 1993, 115, 9531–9541. https://doi.org/10.1021/ja00074a018
[39] Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic Chemistry – Principles of structure & Reactivity; Pearson Education, Inc, 2005.
[40] Basolo, F.; Gray, H.B.; Pearson, R.G. Mechanism of Substitution Reactions of Complex Ions. XVII.1 Rates of Reaction of Some Platinum(II) and Palladium(II) Complexes with Pyridine. J. Am. Chem. Soc. 1960, 82, 4200–4203. https://doi.org/10.1021/ja01501a021
[41] Basolo, F.; Chatt, J.; Gray, H.B.; Pearson, R.G.; Shaw, B.L. Kinetics of the Reaction of Alkyl and Aryl Compounds of the Nickel Group with Pyridine. J. Chem. Soc. (Resumed) 1961, 2207–2215. https://doi.org/10.1039/JR9610002207
[42] Gray, H.B. Rates of Some Substitution Reactions of Platinum(II) Complexes. J. Am. Chem. Soc. 1962, 84, 1548–1552. https://doi.org/10.1021/ja00868a008
[43] Cheeseman, T.P.; Odell, A.L.; Raethel, H.A. Trans-Effect Order for Alkene, Alkyne, Phosphine, Arsine, Stibine, and Sulphide Ligands from Studies of Diethylamine Exchange Reactions of L,PtCl2,[14C]NHEt2 in Various Solvents. Chem. Commun. 1968, 1496–1498. https://doi.org/10.1039/C19680001496
[44] Hay, R.W. Reaction mechanism of metal complexes; Horwood Publishing Ltd., 2000.
[45] Belluco, U.; Cattalini, L.; Basolo, F.; Pearson, R.G.; Turco, A. Nucleophilic Constants and Substrate Discrimination Factors for Substitution Reactions of Platinum(II) Complexes. J. Am. Chem. Soc. 1965, 87, 241–246. https://doi.org/10.1021/ja01080a019
[46] Gray, H.B.; Olcott, R.J. Kinetics of the Reactions of Diethylenetriamineaquoplatinum(II) Ion with Different Ligands. Inorg. Chem. 1962, 1, 481–485. https://doi.org/10.1021/ic50003a007
[47] Langford, C.H.; Gray, H.B. Ligand substitution process; W. A. Benjamin, Inc., 1966.
[48] Basolo, F.; Pearson, R.G. Mechanism of inorganic reactions, Chapter 4; Wiley: New York, 1958.
[49] Xu, Z.; Wang, Z.; Deng, Z.; Zhu, G. Recent Advances in the Synthesis, Stability, and Activation of Platinum(IV) Anticancer Prodrugs. Coord. Chem. Rev. 2021, 442, 213991. https://doi.org/10.1016/j.ccr.2021.213991
[50] Gosling, R.; Tobe, M.L. Kinetics of the Reversible Displacement of Chloride by Amines under the Trans Effect of Phosphines, Phosphites, and Arsines. Inorg. Chem. 1983, 22, 1235–1244. https://doi.org/10.1021/ic00150a019
[51] Chval, Z.; Sip, M.; Burda, J.V. The Trans Effect in Square-Planar Platinum(II) Complexes—A Density Functional Study. J. Comput. Chem. 2008, 29, 2370–2381. https://doi.org/10.1002/jcc.20980
[52] Tobe, M.L. Inorganic reaction mechanism; Nelson: London, 1972.
[53] Banerjea, D. Coordination chemistry, 3rd edition; Asian Books, 2009.
[54] Lo, W. K. C.; Cavigliasso, G.; Stranger, R., Crowley, J. D.; Blackman, A. G. Five-Coordinate [PtII(bipyridine)2(phosphine)]n+ Complexes: Long-lived Intermediates in Ligand Substitution Reactions of [Pt(bipyridine)2]2+ with Phosphine Ligands. Inorg. Chem. 2014, 53, 3595–3605. https://doi.org/10.1021/ic403089j
[55] Favez, R.; Roulet, R. The System PdX2(PMe3)2 and Trimethylphosphine in Dichloromethane Solution as Studied by Phosphorus-31 Nuclear Magnetic Resonance. Inorg. Chem. 1981, 20, 1598–1601. https://doi.org/10.1021/ic50219a052
[56] Holt, M.S.; Nelson, J.H.; Alcock, N.W. Four- and Five-Coordinate Platinum Complexes of Divinylphenylphosphine. Inorg. Chem. 1986, 25, 2288–2295. https://doi.org/10.1021/ic00234a003
[57] Helm, L.; Elding, L.I.; Merbach, A.E. High-Pressure NMR Kinetics. 21. Activation Parameters and Mechanism for Water Exchange of Tetraaquaplatinum(II) Studied by High-Pressure Oxygen-17 NMR Spectroscopy. Inorg. Chem. 1985, 24, 1719–1721. https://doi.org/10.1021/ic00205a026
[58] Rimm, W.R.; Johnston, D.O.; Oestreich, C.H.; Lambert, D.G.; Jones, M.M. The Reaction of [Pt(dien)Br]+ with a Series of Pyridine Derivatives. J. Inorg. Nucl. Chem. 1967, 29, 2401–2409. https://doi.org/10.1016/0022-1902(67)80297-5
[59] Romeo, R. Dissociative Pathways in Platinum(II) Chemistry. Comments Inorg. Chem. 1990, 11, 21–57. https://doi.org/10.1080/02603599008035817
[60] Romeo, R.; Scolaro, L.M.; Plutino, M.R.; Biani, F.F. de; Bottari, G.; Romeo, A. Ligand Exchange and Substitution at Platinum (II) Complexes: Evidence for a Dissociative Mechanism. Inorganica Chim. Acta 2003, 350, 143–151. https://doi.org/10.1016/S0020-1693(02)01505-0
[61] Plutino, M.R.; Scolaro, L.M.; Romeo, R.; Grassi, A. To What Extent Can Cyclometalation Promote Associative or Dissociative Ligand Substitution at Platinum(II) Complexes? A Combined Kinetic and Theoretical Approach. Inorg. Chem. 2000, 39, 2712–2720. https://doi.org/10.1021/ic9914894
[62] Schmuling, M.; Eldik, R. van. Kinetics and Mechanism of Substitution Reactions of cis-[PtMe2(dmso)2] with Pyridine. Chem. Ber./Recl. 1997, 130, 1791–1799. https://doi.org/10.1002/cber.19971301214
[63] Matsumoto, S.; Kawaguchi, S. Kinetics and Equilibrium of the Reaction between Bis(trifluoroacetylacetonato)palladium(II) and Tri-o-tolylphosphine. Bull. Chem. Soc. Jan. 1981, 54, 1704–1707. https://doi.org/10.1246/bcsj.54.1704
[64] Okeya, S.; Sazaki, H.; Ogita, M.; Takemoto, T.; Onuki, Y.; Nakamura, Y.; Mohapatra, B.K.; Kawaguchi, S. Reactions of the Bis(β-diketonato)palladium(II) Complexes with Various Nitrogen Bases. Bull. Chem. Soc. Jan. 1981, 54, 1978–1994. https://doi.org/10.1246/bcsj.54.1978
[65] Okeya, S.; Nakamura, Y.; Kawaguchi, S. Reactions of Bis(β-diketonato)palladium(II) and Platinum(II) with Tertiary Phosphines. Bull. Chem. Soc. Jan. 1981, 54, 3396–3408. https://doi.org/10.1246/bcsj.54.3396
[66] Cross, R.J. Mechanisms of Inorganic and Organometallic Reactions; Twigg, M.V., Ed.; Chapter 5; Plenum: New York, 1988.
[67] Khan, H. Y.; Ansari, M. F.; Tabassum, S.; Arjmand, F. A Review on the Recent Advances of Interaction Studies of Anticancer Metal-Based Drugs with Therapeutic Targets, DNA and RNAs. Drug Discov. Today 2024, 104055. https://doi.org/10.1016/j.drudis.2024.104055
[68] Lucaciu, R. L.; Hangan, A. C.; Sevastre, B.; Oprean, L. S. Metallo-Drugs in Cancer Therapy: Past, Present and Future. Molecules 2022, 27, 6485. https://doi.org/10.3390/molecules27196485
[69] Arjmand, F.; Khan, H. Y.; Tabassum, S. Progress of Metal-Based Anticancer Chemotherapeutic Agents in Last two Decades and their Comprehensive Biological (DNA/RNA Binding, Cleavage and Cytotoxicity Activity) Studies. Chem. Rec. 2023, 23, e202200247. https://doi.org/10.1002/tcr.202200247
[70] Dasari, S.; Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
[71] Coffetti, G.; Moraschi, M.; Facchetti, G.; Rimoldi, I. The Challenging Treatment of Cisplatin-Resistant Tumors: State of the Art and Future Perspectives. Molecules 2023, 28, 3407. https://doi.org/10.3390/molecules28083407
[72] Gasior-Glogowska, M.; Malek, K.; Zajac, G.; Baransa, M. A New Insight into the Interaction of Cisplatin with DNA: ROA Spectroscopic Studies on the Therapeutic Effect of the Drug. Analyst. 2016, 141, 291–296. https://doi.org/10.1039/C5AN02140E
[73] Dasari, S. Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. https://doi.org/10.1016/j.ejphar.2014.07.025
[74] Nakamura, T.; Yonezowa, A.; Hashimoto, S.; Katsura, T.; Inui, K. Disruption of Multidrug and Toxin Extrusion MATE1 Potentiates Cisplatin-Induced Nephrotoxicity. Biochem. Pharmacol. 2010, 80, 1762–1767. https://doi.org/10.1016/j.bcp.2010.08.019
[75] Zoń, A.; Bednarek, I. Cisplatin in Ovarian Cancer Treatment—Known Limitations in Therapy Force New Solutions. Int. J. Mol. Sci. 2023, 24, 7585. https://doi.org/10.3390/ijms24087585
[76] Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-Based Drugs for Cancer Therapy and Anti-Tumor Strategies. Theranostics 2022, 12, 2115–2132. https://www.thno.org/v12p2115.htm
[77] Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. Chem. Rev. 2016, 116, 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597
[78] Maret, W.; Wedd, A. Binding transport and storage of metal ions in biological cells; Royal Society of Chemistry, 2014.
[79] Marques, M.P.M. Platinum and Palladium Polyamine Complexes as Anticancer Agents: The Structural Factor. ISRN Spectroscopy 2013, 2013, 1. https://doi.org/10.1155/2013/287353
[80] Marques, M.P.M.; Gianolio, D.; Cibin, G.; Tomkinson, J.; Parker, S.F.; Valero, R.; Lopes, R.P.; Carvalho, L. A.E.B. de. A Molecular View of Cisplatin's Mode of Action: Interplay with DNA Bases and Acquired Resistance. Phys. Chem. Chem. Phys. 2015, 17, 5155–5171. https://doi.org/10.1039/C4CP05183A
[81] Johnstone, T.C.; Park, G.A.Y.; Lippard, S.J. Understanding and Improving Platinum Anticancer Drugs – Phenanthriplatin. Anticancer Res. 2014, 34, 471–476. https://ar.iiarjournals.org/content/34/1/471/tab-article-info
[82] Karmakar, P.; Bera, B.K.; Barik, K.L.; Mukhopadhyay, S.K.; Ghosh, A.K. Kinetics and Mechanism of the Interaction of DL-Penicillamine with cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) Perchlorate in Aqueous Medium. J. Coord. Chem. 2010, 63, 2158–2171. https://doi.org/10.1080/00958972.2010.498910
[83] Karmakar, P.; Mallick, S.; Bera, B.K.; Mandal, A.; Mondal, S.; Mukhopadhyay, S.K.; Ghosh, A.K. Mechanistic Aspects of Ligand Substitution on cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) by Glycine-L-Leucine. Transit Metal Chem. 2010, 35, 911–916. https://doi.org/10.1007/s11243-010-9411-9
[84] Karmakar, P.; Mallick, S.; Mondal, S.; Bera, B.K.; Mandal, A.; Mukhopadhyay, S.K.; Ghosh, A.K. Kinetics and Mechanism of the Interaction of Adenosine with cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) Perchlorate in Aqueous Medium. Int. J. Chem. Kinet. 2011, 43, 219–229. https://doi.org/10.1002/kin.20549
[85] Karmakar, P.; Ray, S.; Nandi, D.; Mandal, A.; Mondal, S.; Mallick, S.; Bera, B.K.; Ghosh, A.K. Kinetic Studies on Interaction of Platinum(II) Complexes with an ‘S’ Containing Ligand in Aqueous Medium. J. Solution Chem. 2013, 42, 441–458. https://doi.org/10.1007/s10953-013-9969-x
[86] Karmakar, P.; Ray, S.; Mandal, A.; Mondal, S.; Mallick, S.; Bera, B.K.; Ghosh, A.K. Mechanistic and Kinetic Investigations on the Interaction of Model Platinum(II) Complex with Ligands of Biological Significance in Reference to the Antitumor Activity. Syn. React. Inorg. Metaorg. Nanometal Chem. 2013, 43, 1563–1570. https://doi.org/10.1080/15533174.2013.763272
[87] Karmakar, P.; Ray, S.; Mallick, S.; Bera, B.K.; Mandal, A.; Mondal, S.; Ghosh, A.K. Kinetics and Mechanism of Interaction of Some Bioactive Ligands with cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II) in Aqueous Medium. J. Chem. Sci. 2013, 125, 1133–1143. https://doi.org/10.1007/s12039-013-0455-1
[88] Karmakar, P. The Effect of σ-Donation on the Interactions of cis-Diaqua(2-aminomethylpiperidine)platinum(II) Complex with Biomolecules in Aqueous Medium: Synthesis, Kinetic and Mechanistic Study. Transit. Met. Chem. 2014, 39, 727–733. https://doi.org/10.1007/s11243-014-9832-y
[89] Summa, N.; Schiessl, W.; Puchta, R.; Hommes, N. van. E.; Eldik, R. van. Thermodynamic and Kinetic Studies on Reactions of Pt(II) Complexes with Biologically Relevant Nucleophiles. Inorg. Chem. 2006, 45, 2948–2959. https://doi.org/10.1021/ic051955r
[90] Bera, S.K.; Chandra, S.K.; De, G.S. Substitution of Aqua Ligands from cis-[Pt(en)(H2O)2](ClO4)2 and cis-[Pt(dmen)(H2O)2](ClO4)2 (en = ethylenediamine, dmen = N N′-dimethyl ethylenediamine) by Glycine in Aqueous Medium—A Kinetic and Mechanistic Approach. Int. J. Chem. Kinet. 2005, 37, 489–495. https://doi.org/10.1002/kin.20095
[91] Nandi, D.; Ray, S.; Laskar, S.; Ghosh, A.K. Mechanistic Aspects of the Ligand Substitution Reaction of Diaquaethylenediamine-Platinum (II) Ion with 2-Thiouracil in Aqueous Medium. J. Indian Chem. Soc. 2013, 90, 913–920. https://doi.org/10.5281/zenodo.5773987
[92] Nandi, D.; Karmakar, P.; Ray, S.; Chattopadhyay A.; Sarkar (Sain), R.; Ghosh, A.K. Kinetics and Mechanism for Ligand Substitution Reactions of Some Square-Planar Platinum(II) Complexes: Stability and Reactivity Correlations. Inorg. Nano-Met. 2018, 48, 16–22. https://doi.org/10.1080/24701556.2017.1357594
[93] Fekl, U.; Eldik, R. van. Specific Chelate Tuning of the Substitution Kinetics of Platinum(II) Complexes in Aqueous Solution. Eur. J. Inorg. Chem. 1998, 1998, 389–396. https://doi.org/10.1002/(SICI)1099-0682(199803)1998:3%3C389::AID-EJIC389%3E3.0.CO;2-Q
[94] Hofmann, A.; Jaganyi, D.; Munro, O.Q.; Liehr, G.; Eldik, R. van. Electronic Tuning of the Lability of Pt(II) Complexes Through π-Acceptor Effects. Correlations between Thermodynamic, Kinetic, and Theoretical Parameters. Inorg. Chem. 2003, 42, 1688–1700. https://doi.org/10.1021/ic020605r
[95] Mukherjee, S.; Reddy, B. V.P.; Mitra, I.; Saha, R.; Bose, K. J.C.; Reddy, K.S.; Dodda, S.R.; Linert, W.; Moi, S.C. In vitro Model Reaction of Sulfur Containing Bio-Relevant Ligands with Pt(II) Complex: Kinetics, Mechanism, Bioactivity and Computational Studies. RSC Adv. 2015, 5, 76987–76999. https://doi.org/10.1039/C5RA15740D
[96] Mukhopadhyay, S.K. Kinetics and Mechanism of Aqua Ligand Substitution from cis-Diaqua(cis-1,2-diaminocyclohexane)platinum(II)perchlorate by Diethyldithiocarbamate Anion in Aqueous Medium. Transit. Met. Chem. 2008, 33, 739–743. https://doi.org/10.1007/s11243-008-9105-8
[97] Schmulling, M.; Grove, D.M.; Koten, G. van.; Eldik, R. van.; Veldman, N.; Spek, A.L. Comparative Rates of Ligand Substitution Reactions of Pt−C-Bonded Complexes in Aqueous Solution and the X-ray Crystal Structure of [Pt{C6H3(CH2NMe2)2-2,6}(OH2)][OSO2CF3]. Organometallics 1996, 15, 1384–1391. https://doi.org/10.1021/om950474k
[98] Ndagi, U.; Mhlongo, N.; Soliman, M.E. Metal Complexes in Cancer Therapy - An Update from Drug Design Perspective. Drug. Des. Devel. Ther. 2017, 11, 599–616. https://doi.org/10.2147/DDDT.S119488
[99] Palermo, G.; Spinello, A.; Saha, A.; Magistrato, A. Frontiers of Metal-Coordinating Drug Design. Expert Opin. Drug Discov. 2021, 16, 497–511. https://doi.org/10.1080/17460441.2021.1851188