Ferrite-Filled Polymer Composites as Catalysts for Fenton System

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Galyna Khovanets’1,2, Olena Makido1, Tetyana Pokynbroda1, Volodymyr Skorokhoda2, Galyna Dudok2, Oksana Kurylets2
Affiliation: 
1 Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine, 3a, Naukova St., Lviv 79060, Ukraine 2 Lviv Polytechnic National University, 12, S. Bandera St., Lviv 79013, Ukraine khovanets_galyna@ukr.net
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf613.43 KB
Abstract: 
The effect of fillers: cobalt ferrite (CoFe2O4) nanoparticle and various types of surfactants on the structure of the obtained ferrite-filled polymer composites and their adsorption and catalytic properties towards organic dyes in the Fenton system was investigated. Ferrite-polymer composites based on triethylene glycol dimethacrylate (TGM-3) and pre-synthesized cobalt ferrite (CoFe2O4) nanoparticles with notable magnetic properties were obtained via in situ photoinitiated free radical polymerization. To evenly distribute CoFe2O4 nanoparticles in the polymer matrix and increase its porosity during synthesis, various surfactants, both synthetic (sodium dodecyl sulfate) and natural (rhamnolipids), were used. The synthesized ferrite-filled polymer composites are transparent, strong, elastic, and homogeneous in structure. The adsorption and catalytic properties of the obtained films based on a polymer composite TGM-3–CoFe2O4 in an aqueous solution of the organic dye methylene blue (MB) as a model wastewater pollutant were studied. It was found that the composites obtained with the addition of surfactants show good adsorption and catalytic properties, as evidenced by the high degree of MB extraction from the solution (up to 94 %). The use of natural surfactants (rhamnolipids) makes it possible to increase the adsorption efficiency by 4–5 %, and catalytic oxidation by 20 %. In addition to their adsorption and catalytic properties, these films are magnetically separable, allowing them to be easily removed from the environment and making them promising for water resource recovery processes.
References: 

[1] Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Dayana D.A.Z.N.; Amelia, J.J.N.; Rani, M.S.A.; Norrrahim, M.N.F.; Nurazzi, N.M.; Aisyah, H.A.; Sharma, S.; et al. Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers 2021, 13, 1701. https://doi.org/10.3390/polym13111701
[2] Skorokhoda, V.; Semenyuk, N.; Dudok, G.; Kysil, H. Silver-Containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 3, 67–73. https://doi.org/10.32434/0321-4095-2022-142-3-67-73
[3] Dantas de Oliveira, A., Augusto Gonçalves Beatrice, C. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites ‒ Recent Evolutions; Sivasankaran S, Ed.; IntechOpen, 2019. Available from: http://dx.doi.org/10.5772/intechopen.81329
[4] Dudok, G.; Semenyuk, N.; Kysil, K.; Ilkiv, I.; Skorokhoda, V. Regularities of Obtaining Silver Nanoparticles in the Presence of Polyvinylpyrrolidone. Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", Odesa, Ukraine, September 05-11, 2021, NAP 2021, 1–4. https://doi.org/10.1109/NAP51885.2021.9568511
[5] Mamunya, Ye. P.; Davydenko, V.; Pissis. P.; Lebedev, E. V. Electrical and Thermal Conductivity of Polymers Filled with Metal Powders. Eur. Polym. J. 2002, 38, 1887‒1897. http://doi.org/10.1016/S0014-3057(02)00064-2
[6] Hou, Y. H.; Zhao, Y. J.; Liu, Z. W.; Yu, H. Y.; Zhong, X. C.; Qiu, W. Q.; Zeng, D. C.; Wen, L. S. Structural, Electronic and Magnetic Properties of Partially Inverse Spinel CoFe2O4: A First-Principles Study. J. Phys. D: Applied Physics 2010, 43, 445003. http://doi.org/10.1088/0022-3727/43/44/445003
[7] Medvedevskikh, Yu.; Makido, O.; Khovanets’, G.; Karpenko, О.; Pokynbroda, T.; Yevchuk, I. Investigation of the Adsorption Properties of a New Composite Catalyst for the Fenton System. Chem. Chem. Technol. 2024, 18, 474‒484. https://doi.org/10.23939/chcht18.04.474
[8] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem. Chem. Technol. 2022, 16, 227‒236. https://doi.org/10.23939/chcht16.02.227
[9] Andrzejewska, E. Photopolymerization Kinetics of Multifunctional Monomers. Progr. Polym. Sci. 2001, 26, 605‒665. https://doi.org/10.1016/S0079-6700(01)00004-1
[10] Wang, Z.; Cui, F.; Sui, Y.; Yan, J. Radical Chemistry in Polymer Science: An Overview and Recent Advances. Beilstein J. Org. Chem. 2023, 19, 1580–1603. https://doi.org/10.3762/bjoc.19.116
[11] Semeniuk, I.; Kochubei, V.; Skorokhoda, V.; Midyana, H.; Karpenko, E.; Pokynbroda, T.; Melnyk, V. Biosynthesis Products of Рseudomonas sp. PS-17 Strain Metabolites. 1. Obtaining and Thermal Characteristics. Chem. Chem. Technol. 2020, 14, 26–31. https://doi.org/10.23939/chcht14.01.026
[12] Prokopalo, A. M.; Maziar, I. V.; Zayarnyuk, N. Z.; Krychkovska, A. M.; Karpenko, O. V.; Lubenets, V. I. Combined Solutions Using Biosurfactants Based on Water-Insolute Biologically Active Compounds. Chem. Techn. Appl. Subst. 2022, 5, 96‒101. https://doi.org/10.23939/ctas2022.01.096
[13] Makido, O.; Khovanets’, G.; Khavunko, O. Synthesis of Catalysts Based on Magnetic Particles CoFe2O4. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021, LXVI, 90‒97. http://doi.org/10.37827/ntsh.chem.2021.66.090
[14] Thakur, P.; Thakur, P.; Kishore, K.; Singh, M.; Sharma, S.; Sharma, P.; Sharma, P.; Lal, M. Structural, Morphological, and Magnetic Properties of CoFe2O4 Nano-Ferrites Synthesized via Co-Precipitation Route. Mat. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2022.12.233
[15] Khovanets’, G. I.; Medvedevskikh, Yu. G.; Yevchuk, I. Yu. Kinetics of Photoinitiated Copolymerization of Bifunctional (meth)Acrylates Till High Conversion and Kinetic Model of the Processes. Proc. Shevchenko Sci. Soc. Chem. Biochem. 2010, 25, 172‒182.
[16] Makido, O. Yu.; Medvedevskikh, Yu. G.; Khovanets, G. I. Investigation into the Adsorption of Methylene Blue on the Surface of a «Core–Shell» Type Catalyst for the Fenton System. Voprosy khimii i khimicheskoi tekhnologii 2020, 6, 91‒98. http://doi.org/10.32434/0321-4095-2020-133-6-91-98
[17] Ouyang, X.; Huang, X.; Pan, Q.; Zuo, C.; Huang, C.; Yang, X.; Zhao, Y. Synthesis and Characterization of Triethylene Glycol Dimethacrylate Nanocapsules Used in a Self-Healing Bonding Resin. J. Dent. 2011, 39, 825‒833. https://doi.org/10.1016/j.jdent.2011.09.001
[18] Wang, H.; Huang, J.; Ding, L.; Li, D. A Facile Synthesis of Monodisperse CoFe2O4/SiO2 Nanoparticles. Appl. Sur. Sci. 2011, 257, 7107‒7112. https://doi.org/10.1016/j.apsusc.2011.03.063
[19] Habibi, M. H.; Parhizkar, H. Ja. FTIR and UV–Vis Diffuse Reflectance Spectroscopy Studies of the Wet Chemical (WC) Route Synthesized Nano-Structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 127, 102‒106. https://doi.org/10.1016/j.saa.2014.02.090
[20] Klima, K. M.; Koh, C. H.; Brouwers, H. J. H.; Yu, Qingliang. Synergistic Effect of Surfactants in Porous Geopolymer: Tailoring Pore Size and Pore Connectivity. Cem. Concr. Compos. 2022, 134, 104774. https://doi.org/10.1016/j.cemconcomp.2022.104774
[21] Qian, G.; Lei, D.; Tong, W.; Guan, X.; Jian K.; Ming, X. Effect of Surfactant on Morphology and Pore Size of Polysulfone Membrane. J. Polym. Res. 2018, 25, 21. https://doi.org/10.1007/s10965-017-1410-5
[22] Kong, X.; Shu, G.; Lu, X.; Wu, Ch.; Gai, Y. Manipulating Membrane Surface Porosity via Deep Insight into Surfactants During Nonsolvent Induced Phase Separation. J. Membr. Sci. 2020, 611, 118358. https://doi.org/10.1016/j.memsci.2020.118358
[23] Polak, D.; Sułkowska, J.; Szwast M. The Influence of Surfactant Pluronic P123 Addition on the Mixed Matrix Membrane PEBAX® 2533 – ZIF-8 Separation Properties. Desalin. Water Treat. 2021, 214, 64‒73. https://doi.org/10.5004/dwt.2021.26647