Ферит-наповнені полімерні композити як каталізатори для системи фентона
| Attachment | Size |
|---|---|
| 613.43 KB |
Keywords:
[1] Ilyas, R.A.; Sapuan, S.M.; Asyraf, M.R.M.; Dayana D.A.Z.N.; Amelia, J.J.N.; Rani, M.S.A.; Norrrahim, M.N.F.; Nurazzi, N.M.; Aisyah, H.A.; Sharma, S.; et al. Polymer Composites Filled with Metal Derivatives: A Review of Flame Retardants. Polymers 2021, 13, 1701. https://doi.org/10.3390/polym13111701
[2] Skorokhoda, V.; Semenyuk, N.; Dudok, G.; Kysil, H. Silver-Containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 3, 67–73. https://doi.org/10.32434/0321-4095-2022-142-3-67-73
[3] Dantas de Oliveira, A., Augusto Gonçalves Beatrice, C. Polymer Nanocomposites with Different Types of Nanofiller. In Nanocomposites ‒ Recent Evolutions; Sivasankaran S, Ed.; IntechOpen, 2019. Available from: http://dx.doi.org/10.5772/intechopen.81329
[4] Dudok, G.; Semenyuk, N.; Kysil, K.; Ilkiv, I.; Skorokhoda, V. Regularities of Obtaining Silver Nanoparticles in the Presence of Polyvinylpyrrolidone. Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications and Properties", Odesa, Ukraine, September 05-11, 2021, NAP 2021, 1–4. https://doi.org/10.1109/NAP51885.2021.9568511
[5] Mamunya, Ye. P.; Davydenko, V.; Pissis. P.; Lebedev, E. V. Electrical and Thermal Conductivity of Polymers Filled with Metal Powders. Eur. Polym. J. 2002, 38, 1887‒1897. http://doi.org/10.1016/S0014-3057(02)00064-2
[6] Hou, Y. H.; Zhao, Y. J.; Liu, Z. W.; Yu, H. Y.; Zhong, X. C.; Qiu, W. Q.; Zeng, D. C.; Wen, L. S. Structural, Electronic and Magnetic Properties of Partially Inverse Spinel CoFe2O4: A First-Principles Study. J. Phys. D: Applied Physics 2010, 43, 445003. http://doi.org/10.1088/0022-3727/43/44/445003
[7] Medvedevskikh, Yu.; Makido, O.; Khovanets’, G.; Karpenko, О.; Pokynbroda, T.; Yevchuk, I. Investigation of the Adsorption Properties of a New Composite Catalyst for the Fenton System. Chem. Chem. Technol. 2024, 18, 474‒484. https://doi.org/10.23939/chcht18.04.474
[8] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured Magnetically Sensitive Catalysts for the Fenton System: Obtaining, Research, Application. Chem. Chem. Technol. 2022, 16, 227‒236. https://doi.org/10.23939/chcht16.02.227
[9] Andrzejewska, E. Photopolymerization Kinetics of Multifunctional Monomers. Progr. Polym. Sci. 2001, 26, 605‒665. https://doi.org/10.1016/S0079-6700(01)00004-1
[10] Wang, Z.; Cui, F.; Sui, Y.; Yan, J. Radical Chemistry in Polymer Science: An Overview and Recent Advances. Beilstein J. Org. Chem. 2023, 19, 1580–1603. https://doi.org/10.3762/bjoc.19.116
[11] Semeniuk, I.; Kochubei, V.; Skorokhoda, V.; Midyana, H.; Karpenko, E.; Pokynbroda, T.; Melnyk, V. Biosynthesis Products of Рseudomonas sp. PS-17 Strain Metabolites. 1. Obtaining and Thermal Characteristics. Chem. Chem. Technol. 2020, 14, 26–31. https://doi.org/10.23939/chcht14.01.026
[12] Prokopalo, A. M.; Maziar, I. V.; Zayarnyuk, N. Z.; Krychkovska, A. M.; Karpenko, O. V.; Lubenets, V. I. Combined Solutions Using Biosurfactants Based on Water-Insolute Biologically Active Compounds. Chem. Techn. Appl. Subst. 2022, 5, 96‒101. https://doi.org/10.23939/ctas2022.01.096
[13] Makido, O.; Khovanets’, G.; Khavunko, O. Synthesis of Catalysts Based on Magnetic Particles CoFe2O4. Proc. Shevchenko Sci. Soc. Chem. Sci. 2021, LXVI, 90‒97. http://doi.org/10.37827/ntsh.chem.2021.66.090
[14] Thakur, P.; Thakur, P.; Kishore, K.; Singh, M.; Sharma, S.; Sharma, P.; Sharma, P.; Lal, M. Structural, Morphological, and Magnetic Properties of CoFe2O4 Nano-Ferrites Synthesized via Co-Precipitation Route. Mat. Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2022.12.233
[15] Khovanets’, G. I.; Medvedevskikh, Yu. G.; Yevchuk, I. Yu. Kinetics of Photoinitiated Copolymerization of Bifunctional (meth)Acrylates Till High Conversion and Kinetic Model of the Processes. Proc. Shevchenko Sci. Soc. Chem. Biochem. 2010, 25, 172‒182.
[16] Makido, O. Yu.; Medvedevskikh, Yu. G.; Khovanets, G. I. Investigation into the Adsorption of Methylene Blue on the Surface of a «Core–Shell» Type Catalyst for the Fenton System. Voprosy khimii i khimicheskoi tekhnologii 2020, 6, 91‒98. http://doi.org/10.32434/0321-4095-2020-133-6-91-98
[17] Ouyang, X.; Huang, X.; Pan, Q.; Zuo, C.; Huang, C.; Yang, X.; Zhao, Y. Synthesis and Characterization of Triethylene Glycol Dimethacrylate Nanocapsules Used in a Self-Healing Bonding Resin. J. Dent. 2011, 39, 825‒833. https://doi.org/10.1016/j.jdent.2011.09.001
[18] Wang, H.; Huang, J.; Ding, L.; Li, D. A Facile Synthesis of Monodisperse CoFe2O4/SiO2 Nanoparticles. Appl. Sur. Sci. 2011, 257, 7107‒7112. https://doi.org/10.1016/j.apsusc.2011.03.063
[19] Habibi, M. H.; Parhizkar, H. Ja. FTIR and UV–Vis Diffuse Reflectance Spectroscopy Studies of the Wet Chemical (WC) Route Synthesized Nano-Structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2014, 127, 102‒106. https://doi.org/10.1016/j.saa.2014.02.090
[20] Klima, K. M.; Koh, C. H.; Brouwers, H. J. H.; Yu, Qingliang. Synergistic Effect of Surfactants in Porous Geopolymer: Tailoring Pore Size and Pore Connectivity. Cem. Concr. Compos. 2022, 134, 104774. https://doi.org/10.1016/j.cemconcomp.2022.104774
[21] Qian, G.; Lei, D.; Tong, W.; Guan, X.; Jian K.; Ming, X. Effect of Surfactant on Morphology and Pore Size of Polysulfone Membrane. J. Polym. Res. 2018, 25, 21. https://doi.org/10.1007/s10965-017-1410-5
[22] Kong, X.; Shu, G.; Lu, X.; Wu, Ch.; Gai, Y. Manipulating Membrane Surface Porosity via Deep Insight into Surfactants During Nonsolvent Induced Phase Separation. J. Membr. Sci. 2020, 611, 118358. https://doi.org/10.1016/j.memsci.2020.118358
[23] Polak, D.; Sułkowska, J.; Szwast M. The Influence of Surfactant Pluronic P123 Addition on the Mixed Matrix Membrane PEBAX® 2533 – ZIF-8 Separation Properties. Desalin. Water Treat. 2021, 214, 64‒73. https://doi.org/10.5004/dwt.2021.26647