Enhancing the Clarification of Azzaba Landfill Leachate Using Biocoagulants with Optimization by Box Behnken Design

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Seif Eddine Semassel1,2, Kenza Elhadeuf1,2, Nabil Bougdah3,4, Nabil Messikh1
Affiliation: 
1 Department of Process Engineering, Faculty of Technology, University of 20 August 1955-Skikda, Algeria 2 Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology, University of 20 August 1955-Skikda, Algeria 3 Department of Petrochemistry, Faculty of Technology, University of 20 August 1955-Skikda, Algeria 4 Laboratory of Physico-Chemistry of Surfaces and Interfaces (LRPCSI), University of 20 August 1955-Skikda, Algeria n.bougdah@univ-skikda.dz
DOI: 
https://doi.org/10.23939/chcht19.02.307
AttachmentSize
PDF icon full_text.pdf724.07 KB
Abstract: 
This study focuses on optimizing the coagulation-flocculation process for treating pollutants in the leachate from Azzaba landfill, utilizing natural coagulants: walnut shells, Moringa oleifera seeds, and Opuntia ficus-indica leaves. Walnut shells, at pH 4, a coagulant dosage of 12g/L, 300rpm stirring speed, and 25 minutes of treatment, demonstrated remarkable reductions in turbidity (83.92%) and suspended solids (92%). Opuntia ficus-indica, operating under pH 6, a coagulant dosage of 10g/L, 300rpm stirring speed, and 20 minutes of treatment, achieved significant reductions in turbidity (86%) and suspended solids (90%). Moringa oleifera, functioning at pH 3, a coagulant dosage of 6g/L, 300rpm stirring speed, and 35 minutes of treatment, exhibited substantial decreases in turbidity (91%) and suspended solids (85%). Adding lime and starch as flocculants further enhanced treatment efficiency, particularly in turbidity reduction. The Box Behnken design (BBD) optimization highlighted the outstanding effectiveness of coagulants, emphasizing their exceptional performance in turbidity and suspended solids removal. However, maintaining pH stability remains pivotal for optimal results. These findings underscore the efficiency of natural coagulants, especially walnut shells, in leachate treatment, showcasing a promising approach to environmental remediation.
References: 

[1] Luo, H.; Zeng, Y.; Cheng, Y.; He, D.; Pan, X. Recent Advances in Municipal Landfill Leachate: A Review Focusing on its Characteristics, Treatment, and Toxicity Assessment. Sci. Total Environ. 2020, 703, 135468. https://doi.org/10.1016/j.scitotenv.2019.135468
https://doi.org/10.1016/j.scitotenv.2019.135468

[2] Kun, W.; Febelyn, R.; Tao, Z. Risk Assessment and Investigation of Landfill Leachate as a Source of Emerging Organic Contaminants to the Surrounding Environment: A Case Study of the Largest Landfill in Jinan City, China. Environ. Sci. Pollut. Res. 2021, 28, 18368-18381. https://doi.org/10.1007/s11356-020-10093-8
https://doi.org/10.1007/s11356-020-10093-8

[3] Li, W.; Hua, T.; Zhou, Q.; Zhang, S.; Li, F. Treatment of Stabilized Landfill Leachate by the Combined Process of Coagulation/Flocculation and Powder Activated Carbon Adsorption. Desalination 2010, 264, 56-62. https://doi.org/10.1016/j.desal.2010.07.004
https://doi.org/10.1016/j.desal.2010.07.004

[4] Assou, M.; El Fels, L.; El Asli, A.; Fakidi, H.; Souabi, S.; Hafidi, M. Landfill Leachate Treatment by a Coagulation-Flocculation Process: Effect of the Introduction Order of the Reagents. Desalin. Water Treat. 2016, 57, 21817-21826. https://doi.org/10.1080/19443994.2015.1127779
https://doi.org/10.1080/19443994.2015.1127779

[5] Ghaffariraad, M.; Ghanbarzadeh Lak, M. Landfill Leachate Treatment through Coagulation-Flocculation with Lime and Bio-Sorption by Walnut-Shell. J. Environ. Manag. 2021, 68, 226-239. https://doi.org/10.1007/s00267-021-01489-4
https://doi.org/10.1007/s00267-021-01489-4

[6] Azreen, I.; Abu Zahrim, Y. Colour Removal from Biologically Treated Landfill Leachate with Tannin-Based Coagulant. J. Environ. Chem. Eng. 2019, 7, 103483. https://doi.org/10.1016/j.jece.2019.103483
https://doi.org/10.1016/j.jece.2019.103483

[7] Ayat, A.; Arris, S.; Bencheikh-Lehocine, M.; Meniai, A. H. Landfill Leachate Pretreatment by Biocoagulation/Bioflocculation Process Using Plant-Based Coagulant (Optimization by Response Surface Methodology). Desalin. Water Treat. 2021, 235, 66-79. https://doi.org/10.5004/dwt.2021.27584
https://doi.org/10.5004/dwt.2021.27584

[8] Labanowski, J.; Pallier, V.; Feuillade-Cathalifaud, G. Study of Organic Matter During Coagulation and Electrocoagulation Processes: Application to a Stabilized Landfill Leachate. J. Hazard. Mater. 2010, 179, 166-172. https://doi.org/10.1016/j.jhazmat.2010.02.074
https://doi.org/10.1016/j.jhazmat.2010.02.074

[9] Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468-493. https://doi.org/10.1016/j.jhazmat.2007.09.077
https://doi.org/10.1016/j.jhazmat.2007.09.077

[10] Wiszniowski, J.; Robert, D.; Surmacz-Gorska, J.; Miksch, K.; Weber, J.V. Landfill Leachate Treatment Methods. Environ. Chem. Lett. 2006, 4, 51-61. https://doi.org/10.1007/s10311-005-0016-z
https://doi.org/10.1007/s10311-005-0016-z

[11] Ang, W.L.; Mohammad, A.W. State of the Art and Sustainability of Natural Coagulants in Water and Wastewater Treatment. J. Clean. Prod. 2020, 262, 121267. https://doi.org/10.1016/j.jclepro.2020.121267
https://doi.org/10.1016/j.jclepro.2020.121267

[12] Megersa, M.; Beyene, A.; Ambelu, A. Comparison of Purified and Crude Extracted Coagulants from Plant Species for Turbidity Removal. Int. J. Environ. Sci. Technol. 2019, 16, 2333-2342, https://doi.org/10.1007/s13762-018-1844-2
https://doi.org/10.1007/s13762-018-1844-2

[13] Taiwo, A.S.; Adenike, K.; Aderonke, O. Efficacy of a Natural Coagulant Protein from Moringa oleifera (Lam) Seeds in Treatment of Opa Reservoir Water, Ile-Ife, Nigeria. Heliyon 2020, 6, e03335. https://doi.org/10.1016/j.heliyon.2020.e03335
https://doi.org/10.1016/j.heliyon.2020.e03335

[14] Shan, T.C.; Matar, M.A.; Makky, E.A.; Ali, E.N. The Use of Moringa oleifera Seed as a Natural Coagulant for Wastewater Treatment and Heavy Metals Removal. Appl. Water Sci. 2017, 7, 1369-1376. https://doi.org/10.1007/s13201-016-0499-8
https://doi.org/10.1007/s13201-016-0499-8

[15] Choudhary, M.; Ray, M.B.; Neogi, S. Evaluation of the Potential Application of Cactus (Opuntia Ficus-Indica) as a Bio-Coagulant for Pre-Treatment of Oil Sands Process-Affected. Water. Sep. Purif. Technol. 2019, 209, 714-724. https://doi.org/10.1016/j.seppur.2018.09.033
https://doi.org/10.1016/j.seppur.2018.09.033

[16] Yunos, F.H.M.; Nasir, N.M.; Jusoh, H.H.W.; Khatoon, H.; Lam, S.S.; Jusoh, A. Harvesting of Microalgae (Chlorella sp.) from Aquaculture Bioflocs Using an Environmental-Friendly Chitosan-Based Bio-Coagulant. Int. Biodeterior. Biodegrad. 2017, 124, 243-249. https://doi.org/10.1016/j.ibiod.2017.07.016
https://doi.org/10.1016/j.ibiod.2017.07.016

[17] Bourechech, Z.; Abdelmalek, F.; Ghezzar, M. R.; Addou, A. Treatment of Leachate from Municipal Solid Waste of Mostaganem District in Algeria: Decision Support for Advising a Process Treatment. Waste Manag. Res. 2018, 36, 68-78. https://doi.org/10.1177/0734242X17739970
https://doi.org/10.1177/0734242X17739970

[18] Djeffal, K.; Bouranene, S.; Fievet, P.; Déon, S.; Gheid, A. Treatment of Controlled Discharge Leachate by Coagulation-Flocculation: Influence of Operational Conditions. Sep. Sci. Technol. 2021, 56, 168-183. https://doi.org/10.1080/01496395.2019.1708114
https://doi.org/10.1080/01496395.2019.1708114

[19] Liu, D.; Yuan, Y.; Wei, Y.; Zhang, H.; Si, Y.; Zhang, F. Removal of Refractory Organics and Heavy Metals in Landfill Leachate Concentrate by Peroxi-Coagulation Process. J. Environ. Sci. 2022, 116, 43-51. https://doi.org/10.1016/j.jes.2021.07.006
https://doi.org/10.1016/j.jes.2021.07.006

[20] Assou, M.; El Fels, L.; El Asli, A.; Fakidi, H.; Souabi, S.; Hafidi, M. Landfill Leachate Treatment by a Coagulation-Flocculation Process: Effect of the Introduction Order of the Reagents. Desalin. Water Treat. 2016, 57, 21817-21826. https://doi.org/10.1080/19443994.2015.1127779
https://doi.org/10.1080/19443994.2015.1127779

[21] Cheng, S.Y.; Show, P.L.; Juan, J.C.; Chang, J.S.; Lau, B.F.; Lai, S.H.; Ling, T.C. Landfill Leachate Wastewater Treatment to Facilitate Resource Recovery by a Coagulation-Flocculation Process via Hydrogen Bond. Chemosphere 2021, 262, 127829. https://doi.org/10.1016/j.chemosphere.2020.127829
https://doi.org/10.1016/j.chemosphere.2020.127829

[22] Banch, T.J.; Hanafiah, M.M.; Alkarkhi, A.F.; Abu Amr, S.S. Factorial Design and Optimization of Landfill Leachate Treatment Using Tannin-Based Natural Coagulant. Polymers 2019, 11, 1349. https://doi.org/10.3390/polym11081349
https://doi.org/10.3390/polym11081349

[23] Hasna, M.; Hafida, H.; Brahim, L.; Laila, M.; Mohammed, M. Physico-Chemical Treatment of Landfill Leachates Case of the Landfill of Fkih Ben Salah, Morocco. J. Environ. Sci. 2016, 10, 41-50. https://doi.org/10.9790/2402-1012014150

[24] Anyaene, I.H.; Onukwuli, O.D.; Babayemi, A.K.; Obiora-Okafo, I.A.; Ezeh, E.M. Application of Bio Coagulation-Flocculation and Soft Computing Aids for the Removal of Organic Pollutants in Aquaculture Effluent Discharge. Chem. Afr. 2024, 7, 455-478. https://doi.org/10.1007/s42250-023-00754-9
https://doi.org/10.1007/s42250-023-00754-9

[25] Azreen, I.; Abu Zahrim, Y. Colour Removal from Biologically Treated Landfill Leachate with Tannin-Based Coagulant. Environ. Chem. Eng. 2019, 7, 103483. https://doi.org/10.1016/j.jece.2019.103483
https://doi.org/10.1016/j.jece.2019.103483

[26] Sohrabi, Y.; Rahimi, S.; Nafez, A.H.; Mirzaei, N.; Bagheri, A.; Ghadiri, S.K.; Rezaei, S.; Charganeh, S.S. Chemical Coagulation Efficiency in Removal of Water Turbidity. Int. J. Pharm. Res. 2018, 10, 188-194. https://doi.org/10.31838/ijpr/2018.10.03.071
https://doi.org/10.31838/ijpr/2018.10.03.071

[27] Wei, N.; Zhang, Z.; Liu, D.; Wu, Y.; Wang, J.; Wang, Q. Coagulation Behavior of Polyaluminum Chloride: Effects of pH and Coagulant Dosage. Chin. J. Chem. Eng. 2015, 23, 1041-1046. https://doi.org/10.1016/j.cjche.2015.02.003
https://doi.org/10.1016/j.cjche.2015.02.003

[28] De Oliveira, M.S.; Da Silva, L.F.; Barbosa, A.D.; Romualdo, L.L.; Sadoyama, G.; Andrade, L.S. Landfill Leachate Treatment by Combining Coagulation and Advanced Electrochemical Oxidation Techniques. ChemElectroChem. 2019, 6, 1427-1433. https://doi.org/10.1002/celc.201801677
https://doi.org/10.1002/celc.201801677

[29] Maranon, E.; Castrillon, L.; Fernandez-Nava, Y.; Fernandez-Mendez, A.; Fernandez-Sanchez, A. Coagulation-Flocculation as a Pretreatment Process at a Landfill Leachate Nitrification-Denitrification Plant. J. Hazard. Mater. 2008, 156, 538-544. https://doi.org/10.1016/j.jhazmat.2007.12.084
https://doi.org/10.1016/j.jhazmat.2007.12.084

[30] Awodiji, C.T.G.; Nwachukwu, A.N.; Onyechere, C.I.; Iyidiobi, R.G.; Nwabueze, B.J. The Effectiveness of Hydrated Lime as a Flocculating Agent in Water Treatment. Saudi J. Civ. Eng. 2020, 4, 30-37. https://doi.org/10.36348/sjce.2020.v04i03.001

[31] Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363-4389. https://doi.org/10.1021/acs.iecr.5b04703
https://doi.org/10.1021/acs.iecr.5b04703

[32] Benouis, K.; Alami, A.; Khalfi, Y.; Guella, S.; Khane, Y. Optimization of Coagulation Parameters for Turbidity Removal Using Box-Behnken Model. In 2nd International Conference on Industry 4.0 and Artificial Intelligence; Atlantis Press, 2022; pp. 114-121.
https://doi.org/10.2991/aisr.k.220201.021

[33] Sibiya, N.P.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Response Surface Optimisation of a Magnetic Coagulation Process for Wastewater Treatment via Box-Behnken. Mater. Today 2022, 62, S122-S126. https://doi.org/10.1016/j.matpr.2022.02.098
https://doi.org/10.1016/j.matpr.2022.02.098

[34] Kumar, S.S.; Bishnoi, N.R. Coagulation of Landfill Leachate by FeCl3: Process Optimization Using Box-Behnken Design (RSM). Appl. Water Sci. 2017, 7, 1943-1953. https://doi.org/10.1007/s13201-015-0372-1
https://doi.org/10.1007/s13201-015-0372-1

[35] Elhadeuf, K.; Bougdah, N.; Chikhi, M. Optimization of Textile Wastewater Treatment by Electrocoagulation-Microfiltration Using Recycled Electrodes and Box-Behnken Design. Reac. Kinet. Mech. Cat. 2023, 136, 981-1003. https://doi.org/10.1007/s11144-023-02395-y
https://doi.org/10.1007/s11144-023-02395-y

[36] Abu Amr, S.S.; Aziz, H.A.; Bashir, M.J. Application of Response Surface Methodology (RSM) for Optimization of Semi-Aerobic Landfill Leachate Treatment Using Ozone. Appl. Water Sci. 2014, 4, 231-239. https://doi.org/10.1007/s13201-014-0156-z
https://doi.org/10.1007/s13201-014-0156-z

[37] Jalil, M.J.; Rasnan, N.H.A.; Yamin, A.F.M.; Zaini, M.S.M.; Morad, N.; Azmi, I.S.; Mahadi, M.B.; Yeop, M.Z. Optimization of Epoxidation Palm-Based Oleic Acid to Produce Polyols. Chem. Chem. Technol. 2022, 16, 66-73. https://doi.org/10.23939/chcht16.01.066
https://doi.org/10.23939/chcht16.01.066

[38] Djeghader, I.; Bendebane, F.; Ismail, F. Interaction Effect of Operating Parameters during Oxidation of Different Dyes via the Fenton Process. Application of the Plackett-Burmann Design. Chem. Chem. Technol. 2023, 17, 154-163. https://doi.org/10.23939/chcht17.01.154
https://doi.org/10.23939/chcht17.01.154

[39] Bashir, M.J.; Aziz, H.A.; Yusoff, M.S.; Aziz, S.Q.; Mohajeri, S. Stabilized Sanitary Landfill Leachate Treatment Using Anionic Resin: Treatment Optimization by Response Surface Methodology. J. Hazard. Mater. 2010, 182, 115-122. https://doi.org/10.1016/j.jhazmat.2010.06.005
https://doi.org/10.1016/j.jhazmat.2010.06.005

[40] Tak, B.Y.; Tak, B.S.; Kim, Y.J.; Park, Y.J.; Yoon, Y.H.; Min, G.H. Optimization of Color and COD Removal from Livestock Wastewater by Electrocoagulation Process: Application of Box-Behnken Design (BBD). J. Ind. Eng. Chem. 2015, 28, 307-315. https://doi.org/10.1016/j.jiec.2015.03.008
https://doi.org/10.1016/j.jiec.2015.03.008