Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Thermophysical Properties of Composite Metal-Filled Copolymers of Polyvinylpyrrolidone

Oleksandr Grytsenko1, Mykhaylo Bratychak Jr.1, Ludmila Dulebova2, Ivan Gajdoš2
Affiliation: 
1 Lviv Polytechnic National University, 12, St. Bandera Str., 79013 Lviv, Ukraine 2 Technical University of Kosice, 74 Mäsiarska, 04001 Kosice, Slovakia oleksandr.m.grytsenko@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.01.037
AttachmentSize
PDF icon full_text.pdf433.79 KB
Abstract: 
The effect of the presence of finely dispersed metal fillers of various natures (Zn, Co, Ni) on the thermophysical characteristics (Vick heat resistance, glass transition temperature) of polyvinylpyrrolidone block copolymers with 2-hydroxyethylmethacrylate was studied. It was found that the heat resistance of the obtained composites significantly exceeds the heat resistance of unfilled copolymers and is in the range of 360-395K, depending on the nature and content of the metal filler. The change in heat resistance correlates with the change in glass transition temperature, which was evaluated according to the results of thermomechanical and dynamic mechanical thermal analyses. The results of this work are an additional source to characterize the structure of metal-filled copolymers: they confirm the participation of metal filler particles in the formation of the nodes of the copolymer spatial network, and also prove the formation of a different polymer network structure in the interfacial layer on the surface of the metal particle and in the polymer volume.
References: 

[1] Nicolais, L.; Carotenuto, G. Metal-polymer nanocomposites; John Wiley & Sons: Hoboken, NJ, USA, 2005.
https://doi.org/10.1002/0471695432

[2] Kucherenko, A.; Nikitchuk, O.; Baran, N.; Dulebova, L.; Kuznetsova, M.; Moravskyi, V. Characteristics of Metallized Polymeric Raw Materials. In Proceedings of the 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP); IEEE: Odessa, 2021. https://doi.org/10.1109/NAP51885.2021.9568393
https://doi.org/10.1109/NAP51885.2021.9568393

[3] Saeed, A.; Zaaba, N.; Ismeel, H. A Review: Metal Filled Thermoplastic Composites. POLYM-PLAST TECH MAT 2021, 60, 1033-1050. https://doi.org/10.1080/25740881.2021.1882489
https://doi.org/10.1080/25740881.2021.1882489

[4] Hevus, I.; Kohut, A.; Voronov, A. Amphiphilic Invertible Polyurethanes: Synthesis and Properties. Macromolecules 2010, 43, 7488-7494. https://doi.org/10.1021/ma101175k
https://doi.org/10.1021/ma101175k

[5] Los, P.; Lukomska, A.; Jeziorska, R. Metal-Polymer Composites for Electromagnetic Interference Shielding Applications. Polimery 2021, 61, 663-669. https://doi.org/10.14314/polimery.2016.663
https://doi.org/10.14314/polimery.2016.663

[6] Sapronov, O.; Buketov, A.; Yakushchenko, S.; Syzonenko, O.; Sapronova, А.; Sotsenko, V.; Vorobiov, P.; Lypian, Y.; Sieliverstov, I.; Dobrotvor, I. Application of Synthesized Iron/Titanium Carbide Mixture for Restoration of Water Transport Parts by Epoxy Composites. Composites: Mechanics, Computations, Applications: An International Journal 2021, 12, 23-35. https://doi.org/10.1615/CompMechComputApplIntJ.2021039175
https://doi.org/10.1615/CompMechComputApplIntJ.2021039175

[7] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E. Obtainment and Characterization of Metal-Coated Polyethylene Granules as a Basis for the Development of Heat Storage Systems. Polymers 2022, 14, 218. https://doi.org/10.3390/polym14010218
https://doi.org/10.3390/polym14010218

[8] Yaman, K. Fractal Characterization of Electrical Conductivity and Mechanical Properties of Copper Particulate Polyester Matrix Composites Using Image Processing. Polym. Bull. 2022, 79, 3309-3332. https://doi.org/10.1007/s00289-021-03665-2
https://doi.org/10.1007/s00289-021-03665-2

[9] Buketov, A.V.; Bagliuk, G.A.; Sizonenko, O.M.; Sapronov,O.O.; Smetankin, S.O.; Torpakov, A.S. Effect of Particulate Ti-Al-TiC Reinforcements on the Mechanical Properties of Epoxy Polymer Composites. Powder Metall. Met. Ceram. 2023, 61, 586-596. https://doi.org/10.1007/s11106-023-00347-8
https://doi.org/10.1007/s11106-023-00347-8

[10] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dulebova, L.; Spišák, E.; Majerníková, J. Utilization of Polypropylene in the Production of Metal-Filled Polymer Composites: Development and Characteristics. Materials 2020, 13, 2856. https://doi.org/10.3390/ma13122856
https://doi.org/10.3390/ma13122856

[11] Mehvari, S.; Sanchez-Vicente, Y.; González, S.; Lafdi, K. Conductivity Behaviour under Pressure of Copper Micro-Additive/Polyurethane Composites (Experimental and Modelling). Polymers 2022, 14, 1287. https://doi.org/10.3390/polym14071287
https://doi.org/10.3390/polym14071287

[12] Wang, L.; Wang, H.; Huang, X.W.; Song, X.; Hu, M.; Tang, L.; Xue, H.; Gao, J. Superhydrophobic and Superelastic Conductive Rubber Composite for Wearable Strain Sensors with Ultrahigh Sensitivity and Excellent Anti-Corrosion Property. J. Mater. Chem. A 2018, 6, 24523-24533. https://doi.org/10.1039/c8ta07847e
https://doi.org/10.1039/C8TA07847E

[13] Li, H.; Yang, P.; Pageni, P.; Tang, C. Recent Advances in Metal-Containing Polymer Hydrogels. Macromol. Rapid Commun. 2017, 38, 1700109. https://doi.org/10.1002/marc.201700109
https://doi.org/10.1002/marc.201700109

[14] Grytsenko, O.; Dulebova, L.; Spišák, E.; Pukach, P. Metal-Filled Polyvinylpyrrolidone Copolymers: Promising Platforms for Creating Sensors. Polymers 2023, 15, 2259. https://doi.org/10.3390/polym15102259
https://doi.org/10.3390/polym15102259

[15] Kucherenko, A.N.; Moravskyi, V.S.; Kuznetsova, M.Y.; Grytsenko, O.N.; Masyuk, A.S.; Dulebova, L. Regularities of Obtaining Metal-Filled Polymer Composites. In Nanomaterials in biomedical application and biosensors (NAP-2019); Pogrebnjak, A.; Pogorielov, M.; Viter, R., Eds; Springer Proceedings in Physics, vol. 244; Springer: Singapore, 2020; pp. 59-66. https://doi.org/10.1007/978-981-15-3996-1_6
https://doi.org/10.1007/978-981-15-3996-1_6

[16] Hevus, I.; Kohut, A.; Voronov, A. Micellar Assemblies from Amphiphilic Polyurethanes for Size-Controlled Synthesis of Silver Nanoparticles Dispersible both in Polar and Nonpolar Media. J. Nanopart. Res. 2012, 14, 820. https://doi.org/10.1007/s11051-012-0820-x.
https://doi.org/10.1007/s11051-012-0820-x

[17] El-Shamy, A.G. Polymer/Noble Metal Nanocomposites. In Nanocomposites - Recent Evolutions; Sivasankaran, S., Ed.; IntechOpen, London, 2019. https://doi.org/10.5772/intechopen.79016
https://doi.org/10.5772/intechopen.79016

[18] Khatri, B.; Lappe, K.; Noetzel, D.; Pursche, K.; Hanemann, T. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization. Materials 2018, 11, 189. https://doi.org/10.3390/ma11020189
https://doi.org/10.3390/ma11020189

[19] Burhannuddin, N.L.; Nordin, N.A.; Mazlan, S.A. Physicochemical Characterization and Rheological Properties of Magnetic Elastomers Containing Different Shapes of Corroded Carbonyl Iron Particles. Sci. Rep. 2021, 11, 868. https://doi.org/10.1038/s41598-020-80539-z
https://doi.org/10.1038/s41598-020-80539-z

[20] Amoabeng, D.; Velankar, S. A Review of Conductive Polymer Composites Filled with Low Melting Point Metal Alloys. Polym. Eng. Sci. 2017, 58, 1010-1019. https://doi.org/10.1002/pen.24774
https://doi.org/10.1002/pen.24774

[21] Grujić, A.; Stajić-Trošić, J.; Stijepović, M.; Stevanović, J.; Aleksić, R. Magnetic and Dynamic Mechanical Properties of Nd-Fe-B Composite Materials with Polymer Matrix. In Metal, Ceramic and Polymeric Composites for Various Uses; Cuppoletti, J., Ed.; InTechOpen: Rijeka, Croatia, 2011; pp. 524-526. https://doi.org/10.5772/18599
https://doi.org/10.5772/18599

[22] Ranga Reddy, P.A.; Mohana Raju, K.; Subbarami Reddy, N. A Review on Polymer Nanocomposites: Monometallic and Bimetallic Nanoparticles for Biomedicial, Optical and Engineering Applications. Chem. Sci. Rev. Lett. 2013, 1, 228-235.

[23] Rozik, N.; Asaad, J.; Mansour, S.; Gomaa, E. Effect of Aluminum and Aluminum/Nickel Hybrid Fillers on the Properties of Epoxy Composites. Proc. Inst. Mech. Eng. L 2016, 230, 550-557. https://doi.org/10.1177/1464420715581523
https://doi.org/10.1177/1464420715581523

[24] Kohut, A.; Voronov, A.; Samaryk, V.; Peukert, W. Amphiphilic Invertible Polyesters as Reducing and Stabilizing Agents in the Formation of Metal Nanoparticles. Macromol. Rapid Commun. 2007, 28, 1410-1414. https://doi.org/10.1002/marc.200700312
https://doi.org/10.1002/marc.200700312

[25] Moravskyi, V.; Kucherenko, A.; Kuznetsova, M.; Dziaman, I.; Grytsenko, O.; Dulebova, L. Studying the Effect of Concentration Factors on the Process of Chemical Metallization of Powdered Polyvinylchloride. East. Eur. J. Enterp. Technol. 2018, 3, 40-47. https://doi.org/10.15587/1729-4061.2018.131446
https://doi.org/10.15587/1729-4061.2018.131446

[26] Kuntyi, O.; Mazur, A., Kytsya, A., Karpenko, O., Bazylyak, L., Mertsalo, I., Pokynbroda, T.; Prokopalo, A. Electrochemical Synthesis of Silver Nanoparticles in Solutions of Rhamnolipid. Micro Nano Lett. 2020, 15, 802-807. https://doi.org/10.1049/mnl.2020.0195
https://doi.org/10.1049/mnl.2020.0195

[27] Reverberi, A.P.; Salerno, M.; Lauciello, S.; Fabiano, B. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical REDUCTION with Vanadium (+2) Salts. Materials 2016, 9, 809. https://doi.org/10.3390/ma9100809
https://doi.org/10.3390/ma9100809

[28] Tarnavchyk, I.; Voronov, A.; Kohut, A.; Nosova, N.; Varvarenko, S.; Samaryk, V.; Voronov, S. Reactive Hydrogel Networks for the Fabrication of Metal-Polymer Nanocomposites. Macromol. Rapid Commun. 2009, 30, 1564-1569. https://doi.org/10.1002/marc.200900285
https://doi.org/10.1002/marc.200900285

[29] Grytsenko, O.; Naumenko, O.; Suberlyak, O.; Dulebova, L.; Berezhnyy, B. Optimization of the Technological Parameters of the Graft Copolymerization of 2-Hydroxyethyl Methacrylate with Polyvinylpyrrolidone for Nickel Deposition from Salts. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 1, 25-32. https://doi.org/10.32434/0321-4095-2020-128-1-25-32
https://doi.org/10.32434/0321-4095-2020-128-1-25-32

[30] Moravskyi, V.; Dziaman, I.; Suberliak, S.; Grytsenko, O.; Kuznetsova, M. Features of the Production of Metal-Filled Composites by Metallization of Polymeric Raw Materials. In 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP); IEEE: Odessa, Ukraine, 2017. https://doi.org/10.1109/NAP.2017.8190265
https://doi.org/10.1109/NAP.2017.8190265

[31] Chudzik, J.; Bieliński, D.M.; Bratychak, M.; Demchuk, Y.; Astakhova, O.; Jędrzejczyk, M.; Celichowski, G. Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires. Part I: Application of Monoperoxy Derivative of Epoxy Resin (PO). Materials 2021, 14, 1320. https://doi.org/10.3390/ma14051320
https://doi.org/10.3390/ma14051320

[32] Sahiner, N.; Butun, S.; Ozay, O.; Dibek, B. Utilization of Smart Hydrogel-Metal Composites as Catalysis Media. J. Colloid Interface Sci. 2012, 373, 122-128. https://doi.org/10.1016/j.jcis.2011.08.080
https://doi.org/10.1016/j.jcis.2011.08.080

[33] Veerubhotla, K.; Lee, C.H. Design of Biodegradable 3D-Printed Cardiovascular Stent. Bioprinting 2022, 26, e00204. https://doi.org/10.1016/j.bprint.2022.e00204
https://doi.org/10.1016/j.bprint.2022.e00204

[34] Echeverria, C.; Fernandes, S.N.; Godinho, M.H.; Borges, J.P.; Soares, P.I.P. Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels 2018, 4, 54. https://doi.org/10.3390/gels4020054
https://doi.org/10.3390/gels4020054

[35] Pablos, J.L.; Jiménez-Holguín, J.; Salcedo, S.S.; Salinas, A.J.; Corrales, T.; Vallet-Regí, M. New Photocrosslinked 3D Foamed Scaffolds Based on Gelma Copolymers: Potential Application in Bone Tissue Engineering. Gels 2023, 9, 403. https://doi.org/10.3390/gels9050403
https://doi.org/10.3390/gels9050403

[36] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen: London, United Kingdom, 2018; pp. 136-214. https://doi.org/10.5772/intechopen.72082
https://doi.org/10.5772/intechopen.72082

[37] Khan, S.; Ullah, A.; Ullah, K.; Rehman, N. Insight into Hydrogels. Des Monomers Polym 2016, 19, 456-478. http://dx.doi.org/10.1080/15685551.2016.1169380
https://doi.org/10.1080/15685551.2016.1169380

[38] Jumadilov, T.; Abilov, Z.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov. A. Influence of Hydrogels Initial State on their Electrochemical and Volume-Gravimetric Properties in Intergel System Polyacrylic Acid Hydrogel and Poly-4-vinylpyridine Hydrogel. Chem. Chem. Technol. 2015, 9, 459-462. https://doi.org/10.23939/chcht09.04.459
https://doi.org/10.23939/chcht09.04.459

[39] Gibas, I.; Janik, H. Review: Synthetic Polymer Hydrogels for Biomedical Applications. Chem. Chem. Technol. 2010, 4, 297-304. https://doi.org/10.23939/chcht04.04.297
https://doi.org/10.23939/chcht04.04.297

[40] Maikovych, O.; Nosova, N.; Yakoviv, M.; Dron, І.; Stasiuk, A.; Samaryk, V.; Voronov, S. Composite Materials Based on Polyacrylamide and Gelatin Reinforced with Polypropylene Microfiber. Vopr. Khimii i Khimicheskoi Tekhnologii 2021, 1, 45-54.
https://doi.org/10.32434/0321-4095-2021-134-1-45-54

[41] Majcher, M.J.; Hoare, T. Applications of Hydrogels. In Functional Biopolymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer, Cham. 2019; pp 453-490. https://doi.org/10.1007/978-3-319-95990-0_17
https://doi.org/10.1007/978-3-319-95990-0_17

[42] Bercea, M. Bioinspired Hydrogels as Platforms for Life-Science Applications: Challenges and Opportunities. Polymers 2022, 14, 2365. https://doi.org/10.3390/polym14122365
https://doi.org/10.3390/polym14122365

[43] Zhang, Y.S; Khademhosseini, A. Advances in Engineering Hydrogels. Science 2017, 356, eaaf3627. https://doi.org/10.1126/science.aaf3627
https://doi.org/10.1126/science.aaf3627

[44] Dong, W.; Yao, D.; Yang, L. Soft Bimodal Sensor Array Based on Conductive Hydrogel for Driving Status Monitoring. Sensors 2020, 20, 1641. https://doi.org/10.3390/s20061641
https://doi.org/10.3390/s20061641

[45] Samaryk, V.; Varvarenko, S.; Nosova, N.; Fihurka, N.; Musyanovych, A.; Landfester, K.; Popadyuk, N.; Voronov, S. Optical Properties of Hydrogels Filled with Dispersed Nanoparticles. Chem. Chem. Technol. 2017, 11, 449-453. https://doi.org/10.23939/chcht11.04.449
https://doi.org/10.23939/chcht11.04.449

[46] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Skorokhoda, V.; Spišák, E.; Gajdos, I. Features of Structure and Properties of pHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 4580. https://doi.org/10.3390/ma13204580
https://doi.org/10.3390/ma13204580

[47] Grytsenko, O.; Dulebova, L.; Spišák, E.; Berezhnyy, B. New Materials Based on Polyvinylpyrrolidone-Containing Copolymers with Ferromagnetic Fillers. Materials 2022, 15, 5183. https://doi.org/10.3390/ma15155183
https://doi.org/10.3390/ma15155183

[48] Grytsenko, О.; Pukach, P.; Suberlyak, O.; Moravskyi, V.; Kovalchuk, R.; Berezhnyy, B. The Scheffe's Method in the Study of Mathematical Model of the Polymeric Hydrogels Composite Structures Optimization. Math. Model. Comput. 2019, 6, 258-267. https://doi.org/10.23939/mmc2019.02.258
https://doi.org/10.23939/mmc2019.02.258

[49] Grytsenko, O.; Pukach, P.; Suberlyak, O.; Shakhovska, N.; Karovič Jr., V. Usage of Mathematical Modeling and Optimization in Development of Hydrogel Medical Dressings Production. Electronics 2021, 10, 620. https://doi.org/10.3390/electronics10050620
https://doi.org/10.3390/electronics10050620

[50] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312-317. https://doi.org/10.23939/chcht14.03.312
https://doi.org/10.23939/chcht14.03.312