Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis, Characterization and Biological Activity of Mixed Ligand (Imine of Benzidine and 1,10-Phenanthroline) Complexes with Fe(II), Co(II), Ni(II) and Cu(II) Ions

Zainab M. Hassan1, Rawaa A. Alattar1, Suhad Kareem Abass1, Hayder Hamied Mihsen1, Zainab Fadhil Abbas2, Khalid A. Hussain2
Affiliation: 
1 Department of Chemistry, College of Science, University of Kerbala, Karbala, Iraq 2 Department of Biology, College of Science, University of Kerbala, Karbala, Iraq hayderalhmedat@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.01.015
AttachmentSize
PDF icon full_text.pdf1.31 MB
Abstract: 
In this paper, binuclear metal complexes of the metal ions Fe(II), Co(II), Ni(II) and Cu(II) were synthesized by the reaction of the primary ligand (imine of benzidine) (H2L) and the secondary ligand (1,10-phenanthroline) (L`) with these metal ions in a molar ratio of 1:2:2, respectively. The complexes were characterized using CHN elemental analysis, FT-IR, UV-Vis, magnetic susceptibility, molar conductivity, 1H NMR, and TGA-DTA thermogravimetric analysis. According to the results obtained from the elemental analysis and spectral measurements where complexes of Fe(II), Co(II) and Ni(II) have octahedral geometry, while the complex with Cu(II) has a square planar geometry. All the prepared complexes are wholly stable and can keep for months without any significant change. The antibacterial activities of the prepared compounds were evaluated with regard to two bacteria species, gram-negative Proteus and Kelbsiella, by using diffusion agar plates. The inhibition zone diameter around the holes indicated the sensitivity of the bacteria to these compounds, where the Klebsiella bacteria were revealed to be more highly sensitive to these compounds than Proteus bacteria. All synthesized complexes showed more significant effects against Kelbsiella and Protea than the antibiotic (Amikacin).
References: 

[1] Yousif, E.; Majeed, A.; Al-Sammarrae, K.; Salih N.; Salimon J.; Abdullah B. Metal Complexes of Schiff base: Preparation, Characterization and Antibacterial Activity. Arab. J. Chem. 2017, 10, 1639-1644. https://doi.org/10.1016/j.arabjc.2013.06.006
https://doi.org/10.1016/j.arabjc.2013.06.006

[2] Ejidike, I.; Ajibade, P. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent. Int. J. Mol. Sci. 2016, 17, 60. https://doi.org/10.3390/ijms17010060
https://doi.org/10.3390/ijms17010060

[3] Murtaza, S.; Akhtar, M.; Kanwal, F.; Abbas, A.; Ashiq, S.; Shamim S. Synthesis and Biological Evaluation of Schiff Bases of 4-Aminophenazone as an Anti-inflammatory, Analgesic and Antipyretic Agent. J. Saudi Chem. Soc. 2017, 21, 359-372. https://doi.org/10.1016/j.jscs.2014.04.003
https://doi.org/10.1016/j.jscs.2014.04.003

[4] Divya, K.; Pinto, G.; Pinto, A. Application of Metal Complexes of Schiff Bases as an Antimicrobial Drug: A Review of Recent Works. Int. J. Curr. Pharm. Res. 2017, 9, 27-30. https://doi.org/10.22159/ijcpr.2017.v9i3.19966
https://doi.org/10.22159/ijcpr.2017.v9i3.19966

[5] Anacona, J.; Mago, K.; Camus, J. Antibacterial Activity of Transition Metal Complexes with a Tridentate NNO Amoxicillin Derived Schiff Base. Synthesis and Characterization. Appl. Organomet. Chem. 2018, 32, 1. https://doi.org/10.1002/aoc.4374
https://doi.org/10.1002/aoc.4374

[6] Barnabas, M.; Parambadath, S.; Nagappan, S.; Ha, C. Sulfamerazine Schiff-Base Complex Intercalated Layered Double Hydroxide: Synthesis, Characterization, and Antimicrobial Activity. Heliyon. 2019, 5, e01521. https://doi.org/10.1016/j.heliyon.2019.e01521
https://doi.org/10.1016/j.heliyon.2019.e01521

[7] Sunday Nworie, F. Bis(Salicylidene) Ethylenediamine(salen) and bis(Salicylidene) Ethylenediamine-Metal Complexes: from Structure to Biological Activity. J. Anal. Pharm. Res. 2016, 3, 1. https://doi.org/10.15406/japlr.2016.03.00076
https://doi.org/10.15406/japlr.2016.03.00076

[8] Akhter, S.; Zaman, H.; Mir, S. Dar, A.M. Synthesis of Schiff Base Metal Complexes: A Concise Review. Eur. Chem. Bull. 2017, 6, 475-483. https://doi.org/10.17628/ecb.2017.6.475-483
https://doi.org/10.17628/ecb.2017.6.475-483

[9] Rao, N.; Mishra, D.; Maurya, R. Synthesis and Characterisation of Some Novel CIS-Dioxo-Molybdenum(VI) Complexes of Schiff Bases Derived from Salicylaldehyde. Synth. React. Inorg. Met. Chem. 1995, 25, 437-449. https://doi.org/10.1080/15533179508218232
https://doi.org/10.1080/15533179508218232

[10] Felthouse, T.; Hendrickson, D. Magnetic Exchange Interactions in Binuclear Transition-Metal Complexes. 17. Benzidine and p-Phenylenediamine, Extended Aromatic Diamine Bridging Ligands in Binuclear Copper(II) 2,2',2''-triaminotriethylamine and Vanadyl Bis(hexafluoroacetylacetonate) Complexes. Inorg. Chem. 1978, 17, 2636-2648. https://doi.org/10.1021/ic50187a054
https://doi.org/10.1021/ic50187a054

[11] El-Tabl, A. Synthesis and Physico-Chemical Studies on Cobalt(II), Nickel(II) and Copper(II) Complexes of Benzidine Diacetyloxime Transit. Met. Chem. 2002, 27, 166-170. https://doi.org/10.1023/A:1013952726823
https://doi.org/10.1023/A:1013952726823

[12] Zhao, P.; Zhai, S.; Dong, J.: Gao, L.; Liu X.; Wang L.; Kong J.; Li L. Synthesis, Structure, DNA Interaction, and SOD Activity of Three Nickel(II) Complexes Containing L-Phenylalanine Schiff Base and 1,10-Phenanthroline. Bioinorg. Chem. Appl. 2018, 2018, 8478152. https://doi.org/10.1155/2018/8478152
https://doi.org/10.1155/2018/8478152

[13] Patel, R. N.; Singh, N. G.; Gundla, V.L.N. Synthesis, Structure and Properties of Ternary Copper(II) Complexes of ONO Donor Schiff Base, Imidazole, 2,2′-Bipyridine and 1,10-Phenanthroline. Polyhedron 2006, 25, 3312-3318. https://doi.org/10.1016/j.poly.2006.06.017
https://doi.org/10.1016/j.poly.2006.06.017

[14] Kosolapov, D.; Kuschak, P.; Vainshtein, M.; Vatsourina, A.V.; Weiβner, A.; Kästner, M.; Müller, R.A. Microbial Processes of Heavy Metal Removal from Carbon-Deficient Effluents in Constructed Wetlands. Eng. Life Sci. 2004, 4, 403-411. https://doi.org/10.1002/elsc.200420048
https://doi.org/10.1002/elsc.200420048

[15] Selvamohan, T.; Sandhya, V. Studies on Bactericidal Activity of Different Soaps Against Bacterial Strains J. Microbiol. Biotechnol. Res. 2012, 2, 646-650.

[16] Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method: Am. J. Clin. Pathol. 1966, 45, 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493
https://doi.org/10.1093/ajcp/45.4_ts.493

[17] More, G.; Raut, D.; Aruna, K.; Bootwala, S. Synthesis, Spectroscopic Characterization and Antimicrobial Activity Evaluation of New Tridentate Schiff Bases and their Co(II) Complexes. J. Saudi Chem. Soc. 2017, 21, 954-964. https://doi.org/10.1016/j.jscs.2017.05.002
https://doi.org/10.1016/j.jscs.2017.05.002

[18] Singh, D.K.; Singh, N.; Singh, R. Transethmoidal Meningocele: an Unusual Complication of Intracranial Neoplasm. Int. J. Inorg. Chem. 2013, 2013, 1. https://doi.org/10.1136/bcr-2013-009200
https://doi.org/10.1136/bcr-2013-009200

[19] Krishnaveni, G.; Mubarak, M.S; Kiruthika, M.; Elayaperumal, R. Synthesis, Spectral Characterization, Electrochemical Behaviour, In vitro Antimicrobial and DPPH Radical Scavenging Activities of Iron (II), Cobalt (II) Complexes with Imidazolyl Terpyridine. Der Chem. Sin. [Online] 2017, 8. https://www.imedpub.com/articles/synthesis-spectral-characterization-ele... (accessed Oct 06, 2021).

[20] Larsen, C.; Wenger, O. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements. Chem A Eur J., 2018, 24, 2039-2058. https://doi.org/10.1002/chem.201703602
https://doi.org/10.1002/chem.201703602

[21] San Tan, S.; Yanagisawa, S.; Inagaki, K.; Kassim, M.B.; Morikawa, Y. Experimental and Computational Studies on Ruthenium(ii) bis-Diimine Complexes of N,N′-chelate Ligands: the Origin of Changes in Absorption Spectra Upon Oxidation and Reduction. Phys. Chem. Chem. Phys. 2019, 21, 7973. https://doi.org/10.1039/C8CP05016C
https://doi.org/10.1039/C8CP05016C

[22] Goodgame, D.M.L.; Goodgame, M.; Cotton, F.A. Electronic Spectra of Some Tetrahedral Nickel(II) Complexes. J. Am. Chem. Soc., 1961, 83, 4161-4167. https://doi.org/10.1021/ja01481a014
https://doi.org/10.1021/ja01481a014

[23] Lever, A. Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier Pub. Co: Amsterdam, New York, 1968.

[24] Mihsen, H.H.; Shareef N.D. Synthesis, Characterization of Mixed-Ligand Complexes Containing 2,2-Bipyridine and 3-Aminopropyltriethoxysilane. J. Phys. Conf. Ser. 2018, 1032, 1. https://doi.org/10.1088/1742-6596/1032/1/012066
https://doi.org/10.1088/1742-6596/1032/1/012066

[25] Venanzi, L.M. Tetrahedral Complexes of Nickel (II) and the Factors Determining their Formation. J. Inorg. Nucl. Chem. 1958, 8(C), 137-142. https://doi.org/10.1016/0022-1902(58)80175-X
https://doi.org/10.1016/0022-1902(58)80175-X

[26] Knittl, E.T.; Abou-Hussein, A.A.; Linert, W. Syntheses, Characterization, and Biological Activity of Novel Mono- and Binuclear Transition Metal Complexes with a Hydrazone Schiff Base Derived from a Coumarin Derivative and Oxalyldihydrazine. Monatshefte für Chemie-Chemical Mon. 2018, 149, 431-443. https://doi.org/10.1007/s00706-017-2075-9
https://doi.org/10.1007/s00706-017-2075-9

[27] Mihsen, H.H.; Abass, S.K.; Abass, A.K.; Hussain, K.A.; Abbas, Z.F. Template Synthesis of Sn(II), Sn(IV) and Co(II) Complexes via 3-Aminopropyltriethoxysilane and Salicylaldehyde and Evaluate their Antibacterial Sensitivity. Asian J. Chem. 2018, 30, 2277-2280. https://doi.org/10.14233/ajchem.2018.21439
https://doi.org/10.14233/ajchem.2018.21439

[28] Czakis-Sulikowska, D.; Malinowska, A.; Radwañska-Doczekalska, J. Synthesis, Properties and Thermal Decomposition of Bipyridine-Oxalato Complexes with Mn(II), Co(II), Ni(II) and Cu(II). Pol. J. Chem. 2000, 74, 607-614.

[29] Pearson, R.G. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533-3539. https://doi.org/10.1021/ja00905a001
https://doi.org/10.1021/ja00905a001

[30] Sundaram, S.; Kanniappan, G.V.; Kannappan, P. Enzymatic and Non Enzymatic Antioxidant Activity of Tabernaemontana divaricate R.Br. against DEN and Fe-NTA Induced Renal Damage in Wistar Albino Rats. J. Appl. Pharm. Sci. 2015, 5, 33-37. https://doi.org/10.7324/JAPS.2015.50506
https://doi.org/10.7324/JAPS.2015.50506