Solid Polymer Electrolyte Membranes on the Basis of Fluorosiloxane Matrix

Omari Mukbaniani1, 2, Jimsher Aneli2, Tamara Tatrishvili1, 2, Eliza Markarashvili1, 2
1 Iv. Javakhishvili Tbilisi State University, 1, I. Chavchavadze Ave., 0179 Tbilisi, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Iv. Javakhishvili Tbilisi State University, 13, I. Chavchavadze Ave., 0179 Tbilisi, Georgia
PDF icon full_text.pdf439.48 KB
Hydrosilylation reactions of 2,4,6,8-tetrahydro-2,4,6,8-tetramethylcyclotetrasiloxane (D4H) with 2,2,3,3,4,4,5,5-octafluoropentyl acrylate at 1:4.2 ratio of initial compounds catalysed by platinum catalysts have been studied and corresponding adduct D4R' has been obtained. Ring opening polymerization of D4R in the presence of dry potassium hydroxide has been carried out and comb-type polymers with 2,2,3,3,4,4,5,5-octafluoropentyl propionate side groups have been obtained. The synthesized product D4R and polymers were analyzed by FTIR, 1H, 13C, and 29Si NMR spectroscopy. The solid polymer electrolyte membranes have been obtained via sol-gel reactions of polymers with tetraethoxysilane doped with lithium trifluoromethylsulfonate (triflat) and lithium bis(trifluorosulfonyl)imide. It has been found that the electric conductivity of the polymer electrolyte membranes at room temperature changes in the range of (1.9•10-6) – (5.9•10-10) S•cm-1.

[1] Di Noto V., Lavina S., Giffin G. et al.: Electrochim. Acta, 2011, 57, 4.

[2] Armand M.: Solid State Ionics, 1983, 9-10, 745.

[3] Muldoon J., Bucur C., Boaretto N. et al.: Polym. Rev., 2015, 55, 208.

[4] Baudry P., Lascaud S., Majastre H., Bloch D.: J. Power Sources, 1997, 68, 432.

[5] Kerr J.: Polymeric Electrolytes: an Overview [in:] Nazri G., Pistoia G. (Eds.), Lithium Batteries. Springer US, Boston, MA 2003, 575-622.

[6] Sun C., Liu J., Gong Y. et al.: Nano Energy, 2017, 33, 363.

[7] Goodenough J., Kim Y.: Chem. Mater., 2010, 22, 587.

[8] Yue L., Ma J., Zhang J. et al.: Energy Storage Mater., 2016, 5, 139.

[9] Ben Youcef H., Garcia-Calvo O., Lago N. et al.: Electrochim. Acta, 2016, 220, 587.

[10] Kang Y., Lee W., Hack Suh D., Lee C.: J. Power Sources, 2003, 119-121, 448e.

[11] Nugent J., Moganty S., Archer L.: Adv. Mater., 2010, 22, 3677.

[12] Saikia D., Wu H., Lin C. et al.: Polymer, 2012, 53, 6008.

[13] Pan Y., Saikia D., Fang J. et al.: RSC Adv., 2014, 4, 13293.

[14] Chu Y., Liu Z., Saikia D. et al.: Ionics, 2015, 21, 2523.

[15] Yuan W., Shen T., Liu X., Ren J.: Mater. Lett., 2013, 111, 9.

[16] Iwahara T., Kusakabe M., Chiba M., Yonezawa K.: J. Polym. Sci. A, 1993, 31, 2617.


[18] Socrates G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley&Sons 2001.

[19] Stuart B.: Infrared Spectroscopy: Fundamentals and Applications. John Wiley&Sons 2004.

[20] Zhang L., Zhang Z., Harring S. et al.: J. Mater. Chem., 2008, 18, 3713.

[21] Ziman J.: Principles of the Theory of Solids. Cambridge University Press 1964.