Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Optimized Design and Fabrication of Polyethylene Glycol 1000/Polyamide 6 (PEG1000/PA6) Nanofibers for Phase Change Materials (PCMs) Application

Fariba Karimian1, Gholamreza Karimi1, Mohammad Khorram1, Reihaneh Daraeinejad1, Mahnaz M. Abdi1
Affiliation: 
1 Department of Chemical Engineering, Shiraz University, Shiraz 7134851154, Iran ghkarimi@shirazu.ac.ir, karimi1342@gmail.com; mah-naz131@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.02.386
AttachmentSize
PDF icon full_text.pdf726.58 KB
Abstract: 
Ultrafine phase change nanofibers based on polyethylene glycol 1000 (PEG1000) as phase change material (PCM) and polyamide 6 (PA6) as a supporting material were prepared in a systematic manner planned by the Design-Expert® software using the uniaxial electros-pinning. Research surface methodology (RSM) was carried out to optimize the parameters and conditions leading to minimize the fiber diameter. The effect of PEG content, applied voltage, needle gauge, and flow rate on the fiber characteristics was studied by a central composite design (CCD). The minimum diameter of nanofibers was predicted by a quadratic model to be 64.33 nm and the actual fibers diameter prepared under optimal condition showed a very low relative standard error (RSE). It was shown that the PEG/PA6 mass ratio has the dominant effect on the fibers diameter. The results from FTIR and FE-SEM images confirmed well encapsulated PEG in PA6 and no leakage and morphology alterations were observed after heating tests. To further investigate morphological structure and the quality of PEG1000 encapsulation in PA6 matrices, the composite fibers underwent a solvent treatment using ethanol. The results proposed a new innovative method to control operational electrospinning conditions for encapsulating phase change materials in polymer matrices which is very important in thermal energy saving/retrieving applications.
References: 

[1] Van Do, C.; Nguyen, T.T.T.; Park, J.S. Fabrication of Polyethylene Glycol/Polyvinylidene Fluoride Core/Shell Nanofibers via Melt Electrospinning and their Characteristics. Sol. Energy Mater. Sol. Cells 2012, 104, 131-139. https://doi.org/10.1016/j.solmat.2012.04.029
https://doi.org/10.1016/j.solmat.2012.04.029

[2] Riffat, S.; Mempouo, B.; Fang, W. Phase Change Material Developments: A Review. Int. J. Ambient Energy 2013, 36, 102-115. https://doi.org/10.1080/01430750.2013.823106
https://doi.org/10.1080/01430750.2013.823106

[3] Iqbal, K.; Sun, D. Development of Thermo-Regulating Polypropylene Fibre Containing Microencapsulated Phase Change Materials. Renew. Energy 2014, 71, 473-479. https://doi.org/10.1016/j.renene.2014.05.063
https://doi.org/10.1016/j.renene.2014.05.063

[4] Golestaneh, S.I.; Mosallanejad, A.; Karimi, G.; Khorram, M.; Khashi, M. Fabrication and Characterization of Phase Change

Material Composite Fibers with Wide Phase-Transition Temperature Range by Co-Electrospinning Method. Appl. Energy 2016, 182, 409-417. https://doi.org/10.1016/j.apenergy.2016.08.136
https://doi.org/10.1016/j.apenergy.2016.08.136

[5] Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W. et al. Effects of Nano-SiO2 on Morphology, Thermal Energy Storage, Thermal Stability, and Combustion Properties of Electrospun Lauric Acid/PET Ultrafine Composite Fibers as Form-Stable Phase Change Materials. Appl. Energy 2011, 88, 2106-2112. https://doi.org/10.1016/j.apenergy.2010.12.071
https://doi.org/10.1016/j.apenergy.2010.12.071

[6] Cai, Y.; Xu, X.; Gao, C.; Bian, T.; Qiao, H.; Wei, Q. Structural Morphology and Thermal Performance of Composite Phase Change Materials Consisting of Capric Acid Series Fatty Acid Eutectics and Electrospun Polyamide6 Nanofibers for Thermal Energy Storage. Mater Lett. 2012, 89, 43-46. https://doi.org/10.1016/j.matlet.2012.08.067
https://doi.org/10.1016/j.matlet.2012.08.067

[7] Wu, Y.; Chen, C.; Jia, Y.; Wu, J.; Huang, Y.; Wang, L. Review on Electrospun Ultrafine Phase Change Fibers (PCFs) for Thermal Energy Storage. Appl. Energy 2018, 210, 167-181. https://doi.org/10.1016/j.apenergy.2017.11.001
https://doi.org/10.1016/j.apenergy.2017.11.001

[8] Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318-345. https://doi.org/10.1016/j.rser.2007.10.005
https://doi.org/10.1016/j.rser.2007.10.005

[9] Fallahi, A.; Guldentops, G.; Tao, M.; Granados-Focil, S.; Van Dessel, S. Review on Solid-Solid Phase Change Materials for Thermal Energy Storage: Molecular Structure and Thermal Properties. Appl. Therm. Eng. 2017, 127, 1427-1441. https://doi.org/10.1016/j.applthermaleng.2017.08.161
https://doi.org/10.1016/j.applthermaleng.2017.08.161

[10] Sarier, N.; Onder, E. Organic Phase Change Materials and their Textile Applications: An Overview. Thermochimica Acta 2012, 540, 7-60. https://doi.org/10.1016/j.tca.2012.04.013
https://doi.org/10.1016/j.tca.2012.04.013

[11] Cai, Y.; Zong, X.; Zhang, J.; Hu, Y.; Wei, Q.; He, G.; Wang, X.; Zhao, Y.; Fong, H. Electrospun Nanofibrous Mats Absorbed with Fatty Acid Eutectics as an Innovative Type of Form-Stable Phase Change Materials for Storage and Retrieval of Thermal Energy. Sol. Energy Mater. Sol. Cells 2013, 109, 160-168. https://doi.org/10.1016/j.solmat.2012.10.022
https://doi.org/10.1016/j.solmat.2012.10.022

[12] Chen, C.; Liu, K.; Wang, H.; Liu, W.; Zhang, H. Morphology and Performances of Electrospun Polyethylene Glycol/Poly(DL-Lactide) Phase Change Ultrafine Fibers for Thermal Energy Storage. Sol. Energy Mater Sol. Cells 2013, 117, 372-381. https://doi.org/10.1016/j.solmat.2013.07.001
https://doi.org/10.1016/j.solmat.2013.07.001

[13] Chalco-Sandoval, W.; Fabra, M.J.; López-Rubio, A.; Lagaron, J.M. Optimization of Solvents for the Encapsulation of a Phase Change Material in Polymeric Matrices by Electro-Hydrodynamic Processing of Interest in Temperature Buffering Food Applications. Eur. Polym. J. 2015, 72, 23-33. https://doi.org/10.1016/j.eurpolymj.2015.08.033
https://doi.org/10.1016/j.eurpolymj.2015.08.033

[14] Na, P.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of Polymeric Hollow Fibers as Sustainable Technologies: Past, Present, and Future. Prog. Polym. Sci. 2012, 37, 1401-1424. https://doi.org/10.1016/j.progpolymsci.2012.01.001
https://doi.org/10.1016/j.progpolymsci.2012.01.001

[15] Tort, S.; Acartürk, F. Preparation and Characterization of Electrospun Nanofibers Containing Glutamine. Carbohydr. Polym. 2016, 152, 802-814. https://doi.org/10.1016/j.carbpol.2016.07.028
https://doi.org/10.1016/j.carbpol.2016.07.028

[16] Akhtar, M.N.; Sulong, A.B.; Karim, S.A.; Azhari, C.H.; Raza M. R. Evaluation of Thermal, Morphological and Mechanical Properties of PMMA/NaCl/DMF Electrospun Nanofibers: An Investigation Through Surface Methodology Approach. Iran. Polym. J. 2015, 24, 1025-1038. https://doi.org/10.1007/s13726-015-0390-8
https://doi.org/10.1007/s13726-015-0390-8

[17] Sedghi, R.; Shaabani, A. Electrospun Biocompatible Core/Shell Polymer-Free Core Structure Nanofibers with Superior Antimicrobial Potency Against Multi Drug Resistance Organisms. Polymer 2016, 101, 151-157. https://doi.org/10.1016/j.polymer.2016.08.060
https://doi.org/10.1016/j.polymer.2016.08.060

[18] Stepanyan, R.; Subbotin, A.V.; Cuperus, L.; Boonen, P.; Dorschu, M.; Oosterlinck, F.; Bulters, M.J.H. Nanofiber Diameter in Electrospinning of Polymer Solutions: Model and Experiment. Polymer 2016, 97, 428-439. https://doi.org/10.1016/j.polymer.2016.05.045
https://doi.org/10.1016/j.polymer.2016.05.045

[19] McCann, J.T.; Marquez, M.; Xia, Y. Melt Coaxial Electrospinning:  A Versatile Method for the Encapsulation of Solid Materials and Fabrication of Phase Change Nanofibers. Nano Lett. 2006, 12, 2868-2872. https://doi.org/10.1021/nl0620839
https://doi.org/10.1021/nl0620839

[20] Chen, C.; Wang, L.; Huang, Y. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382-1387. https://doi.org/10.1016/j.solmat.2008.05.013
https://doi.org/10.1016/j.solmat.2008.05.013

[21] Pérez-Masiá, R.; López-Rubio, A.; Lagarón, J.M. Development of Zein-Based Heat-Management Structures for Smart Food Packaging. Food Hydrocoll. 2013, 30, 182-191. https://doi.org/10.1016/j.foodhyd.2012.05.010
https://doi.org/10.1016/j.foodhyd.2012.05.010

[22] Kulkarni, A.; Bambole, V.A.; Mahanwar, P.A. Electrospinning of Polymers, Their Modeling and Applications. Polym. Plast. Technol. Eng. 2010, 49, 427-441. https://doi.org/10.1080/03602550903414019
https://doi.org/10.1080/03602550903414019

[23] Saeed, M.J.; Azizli, K.; Isa, M.H.; Bashir, M.J.K. Application of CCD in RSM to Obtain Optimize Treatment of POME Using Fenton Oxidation Process. J. Water Process. Eng. 2015, 8, e7-e16. https://doi.org/10.1016/j.jwpe.2014.11.001
https://doi.org/10.1016/j.jwpe.2014.11.001

[24] Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
https://doi.org/10.1016/j.talanta.2008.05.019

[25] Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons, Inc.: Arizona, 2011.

[26] Hafizi, A.; Ahmadpour, A.; Koolivand-Salooki, M.; Koolivand- Salooki, M.; Heravi, M.M.; Bamoharram, F.F. Comparison of RSM and ANN for the Investigation of Linear Alkylbenzene Synthesis over H14[NaP5W30O110]/SiO2 Catalyst. J. Ind. Eng. Chem. 2013, 19, 1981-1989. https://doi.org/10.1016/j.jiec.2013.03.007
https://doi.org/10.1016/j.jiec.2013.03.007

[27] Chen, C.; Liu, W.; Yang, H.; Zhao, Y.; Liu, S. Synthesis of Solid-Solid Phase Change Material for Thermal Energy Storage by Crosslinking of Polyethylene Glycol with Poly (Glycidyl Methacrylate). Sol. Energy 2011, 85, 2679-2685. https://doi.org/10.1016/j.solener.2011.08.002
https://doi.org/10.1016/j.solener.2011.08.002

[28] Sarı, A.; Alkan, C.; Biçer, A. Synthesis and Thermal Properties of Polystyrene-Graft-PEG Copolymers as New Kinds of Solid-Solid Phase Change Materials for Thermal Energy Storage. Mater. Chem. Phys. 2012, 133, 87-94. https://doi.org/10.1016/j.matchemphys.2011.12.056
https://doi.org/10.1016/j.matchemphys.2011.12.056

[29] Dang, T.N.; Nguyen, T.T.T.; Chung, O.H.; Park, J.S. Fabrication of Form-Stable Poly(ethylene glycol)-Loaded Poly(vinylidene fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromol. Res. 2015, 23, 819-829. https://doi.org/10.1007/s13233-015-3109-y
https://doi.org/10.1007/s13233-015-3109-y

[30] Nguyen, T.T.T.; Park, J.S. Fabrication of Electrospun Nonwoven Mats of Polyvinylidene Fluoride/Polyethylene Glycol/Fumed Silica for Use as Energy Storage Materials. J. Appl. Polym. Sci. 2011, 121, 3596-3603. https://doi.org/10.1002/app.34148
https://doi.org/10.1002/app.34148

[31] Babapoor, A.; Karimi, G.; Khorram, M. Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning. Appl. Therm. Eng. 2016, 99, 1225-1235. https://doi.org/10.1016/j.applthermaleng.2016.02.026
https://doi.org/10.1016/j.applthermaleng.2016.02.026

[32] Babapoor, A.; Karimi, G.; Golestaneh, S.I.; Mezjin, M.A. Coaxial Electro-Spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Appl. Therm. Eng. 2017, 118, 398-407. https://doi.org/10.1016/j.applthermaleng.2017.02.119
https://doi.org/10.1016/j.applthermaleng.2017.02.119

[33] Shi, Q.; Liu, Z.; Jin, X.; Shen, Y.; Liu, Y. Electrospun Fibers Based on Polyvinyl Pyrrolidone/Eu-polyethylene Glycol as Phase Change Luminescence Materials. Mater. Lett. 2015, 147, 113-115. https://doi.org/10.1016/j.matlet.2015.02.040
https://doi.org/10.1016/j.matlet.2015.02.040

[34] Noshadi, I.; Amin, N.A.S.; Parnas, R.S. Continuous Production of Biodiesel from Waste Cooking Oil in a Reactive Distillation Column Catalyzed by Solid Heteropolyacid: Optimization Using Response Surface Methodology (RSM). Fuel 2012, 94, 156-164. https://doi.org/10.1016/j.fuel.2011.10.018
https://doi.org/10.1016/j.fuel.2011.10.018

[35] Hafizi, A.;Ahmadpour, A.; Heravi, M.M.; Bamoharram, F.F.; Khosroshahi, M. Alkylation of Benzene with 1-Decene Using Silica Supported Preyssler Heteropoly Acid: Statistical Design with Response Surface Methodology. Chinese J. Catal. 2012, 33, 494-501. https://doi.org/10.1016/S1872-2067(11)60357-4
https://doi.org/10.1016/S1872-2067(11)60357-4

[36] Forutan, H.R.; Karimi, E.; Hafizi, A.; Rahimpour, M.R.; Keshavarz, P. Expert Representation Chemical Looping Reforming: A Comparative Study of Fe, Mn, Co and Cu as Oxygen Carriers Supported on Al2O3. J. Ind. Eng. Chem. 2015, 21, 900-911. https://doi.org/10.1016/j.jiec.2014.04.031
https://doi.org/10.1016/j.jiec.2014.04.031

[37] Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. Design and Evaluation of Chitosan/Hydroxyapatite Composite Nanofiber Membrane for the Removal of Heavy Metal Ions from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2014, 45, 518-526. https://doi.org/10.1016/j.jtice.2013.04.016
https://doi.org/10.1016/j.jtice.2013.04.016

[38] Chen, C.; Wang, L.; Huang, Y. Electrospun Phase Change Fibers Based on Polyethylene Glycol/cellulose Acetate Blends. Appl. Energy 2011, 88, 3133-3139. https://doi.org/10.1016/j.apenergy.2011.02.026
https://doi.org/10.1016/j.apenergy.2011.02.026

[39] Šehić, A.; Tomšič, B.; Jerman, I.; Vasiljević, J.; Medved, J.; Simončič, B. Synergistic Inhibitory Action of P- and Si-containing Precursors in Sol-Gel Coatings on the Thermal Degradation of Polyamide 6. Polym. Degrad. Stab. 2016, 128, 245-252. https://doi.org/10.1016/j.polymdegradstab.2016.03.026
https://doi.org/10.1016/j.polymdegradstab.2016.03.026

[40] Wu, Q.; Lü, J.; Qu, B. Preparation and Characterization of Microcapsulated Red Phosphorus and its Flame-Retardant Mechanism in Halogen-Free Flame Retardant Polyolefins. Polym. Int. 2003, 52, 1326-1331. https://doi.org/10.1002/pi.1115
https://doi.org/10.1002/pi.1115