Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Basicity and Nucleophilicity Effect in Charge Transfer of AlH3-Base Adducts: Theoretical Approach

Mohammed Aichi1, 2, Meriem Hafied2, 3,
Affiliation: 
1 Department Matter Sciences, Faculty of Sciences and Technology, University of Abbas Laghrour Khenchela, Algeria 2 Laboratory of Materials and Living Chemistry Activity-Reactivity (LCMV-AR); University of Batna1, Algeria 3 Department of Medicine, Faculty of Medicine, University of Batna2, Algeria hafied_meriem@yahoo.fr
DOI: 
https://doi.org/10.23939/chcht17.02.221
AttachmentSize
PDF icon full_text.pdf1.23 MB
Abstract: 
This study permits to explore the interactions involved in Lewis acid (AlH3) and Lewis bases: CO; H2O; NH3; PH3; PC13; H2S; CN–; OH–; O2–2; F–; N(CH3)3; N2; N2H4; N2H2; C5H5N; C6H5-NH2. By means of DFT theory calculations with B3LYP functional using 6-31G(d,p) basis set and in order to check the effects of both the donor and the acceptor in the establishment of the different adducts we focused mainly on the calculation of the energetic gap ∆EHOMO-LUMO, Gibbs energies ∆G, the angle (θ) in AlH3-base and the interaction energy values Einter. The several parameters of the reactivity (electrophilicity index (ω), nucleophilicity (N), chemical potential (μ), hardness (η), and polarizability (α)) are also calculated to define the weak interaction as well as to distinguish between the nucleophilicity and basicity of different Lewis bases. The results showed that the electronic charge transfer is estimated to be important in the systems where the interaction is established between Al and anionic bases, and the electron donor power is predictable for O–2, F–, OH–, and CN–. The pseudo-tetrahedral adduct arrangements depend on the parameter geometries (bond length interaction and θ angle) and Gibbs energies ∆G characterizing the main stability.
References: 

[1] Hankinson, D.J.; Almlöf, J.; Leopold, K.R. A Direct Comparison betweenStructure Correlations and Reaction Paths. J. Phys. Chem. 1996, 100, 6904-6909.https://doi.org/10.1021/jp960353d
https://doi.org/10.1021/jp960353d

[2] Scheiner, S. Understanding Noncovalent Bonds and their Controlling Forces. J. Chem. Phys. 2020, 153, 140901. https://doi.org/10.1063/5.0026168
https://doi.org/10.1063/5.0026168

[3] Brown, T.; LeMay, H.; Bursten, B.; Murphy, C.;Woodward, P.; Stoltzfus, M. Chemistry: The Central Science; Pearson Prentice Hall, 2005.

[4] Swain, C.G.; Scott,C.B. Quantitative Correlation of Relative Rates. Comparison of Hydroxide Ion with Other Nucleophilic Reagents toward Alkyl Halides, Esters, Epoxides and Acyl Halides. J. Am. Chem. Soc. 1953, 75, 141-147.https://doi.org/10.1021/ja01097a041
https://doi.org/10.1021/ja01097a041

[5] Pearson, R.G.; Sobel, H.; Songstad, J. Nucleophilic Reactivity Constants toward Methyl Iodide and Trans-Dichlorodi (Pyridine) Platinum (II). J. Am. Chem. Soc. 1968, 90, 319-326. https://doi.org/10.1021/ja01004a021
https://doi.org/10.1021/ja01004a021

[6] Gupta, K.; Roy, D.R.; Subramanian, V.; Chattaraj, P.K. Are Strong Brønsted Acids Necessarily Strong Lewis Acids?J. mol. Struc.-THEOCHEM2007, 812, 13-24. https://doi.org/10.1016/j.theochem.2007.02.013
https://doi.org/10.1016/j.theochem.2007.02.013

[7] Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793-1874. https://doi.org/10.1021/cr990029p
https://doi.org/10.1021/cr990029p

[8] Forgacs, G.; Colonits, M.; Hargtitai, I. The Gas-Phase Mole-cular Structure of 1-Fluorosilatrane from Electron Diffraction. Struct. Chem. 1990, 1, 245-250.https://doi.org/10.1007/BF00674268
https://doi.org/10.1007/BF00674268

[9] Rad, A.S.; Shadravan, A.; Soleymani, A.A.;Motaghedi, N. Lewis Acid-Base Surface Interaction of Some Boron Compounds with N-Doped Graphene; First Principles Study.Curr. Appl. Phys. 2015, 15, 1271-1277. https://doi.org/10.1016/j.cap.2015.07.018
https://doi.org/10.1016/j.cap.2015.07.018

[10] Aichi, M.; Hafied, M.; Dibi, A. Theoretical Study of Pentava-lent Halosiliconates: Structure and Charge Delocalization.J. Struct. Chem. 2021, 62, 824-834. https://doi.org/10.1134/S0022476621060020
https://doi.org/10.1134/S0022476621060020

[11] Adams, R.D.; Captain, B.; Fu W.; Smith, M.D. Lewis Ac-id−Base Interactions between Metal Atoms and Their Applications for the Synthesis of Bimetallic Cluster Complexes. J. Am. Chem. Soc. 2002, 124, 5628-5629. https://doi.org/10.1021/ja017486j
https://doi.org/10.1021/ja017486j

[12] Jensen, W. The Lewis Acid-Base Concepts: An Overview; John Wiley Sons: New York, 1982.

[13] Poleshchuk, O.K.; Branchadell, V.; Fateev, A.V.; Legon, A.C. SO3 Complexes with Nitrogen Containing Ligands as the Object of Nuclear Quadrupole Interactions and Density Functional Theory Calculations. J. Mol. Struc.-THEOCHEM2006, 761, 195-201. https://doi.org/10.1016/j.theochem.2005.12.032
https://doi.org/10.1016/j.theochem.2005.12.032

[14] Poleshchuk, O.K.; Branchadell, V.; Brycki, B. HFI and DFT Study of the Bonding in Complexes of Halogen and Interhalogen Diatomics with Lewis Base. J. Mol. Struc.-THEOCHEM2006, 760, 175-182. https://doi.org/10.1016/j.theochem.2005.10.016
https://doi.org/10.1016/j.theochem.2005.10.016

[15] Wiśniewski, M.; Gauden, Pearson's, P.A. Hard-Soft Acid-Base Principle as a Means of Interpreting the Reactivity of Carbon Materials. Adsorpt. Sci. Technol. 2006, 24, 389-402. https://doi.org/10.1260/026361706779849744
https://doi.org/10.1260/026361706779849744

[16] Fukui, K.; Yonezawa, T.; Shingu, H. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons.J. Chem. Phys. 1952, 20, 722. https://doi.org/10.1063/1.1700523
https://doi.org/10.1063/1.1700523

[17] Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity Index.J. Am. Chem. Soc.1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x
https://doi.org/10.1021/ja983494x

[18] Parr, R.G.; Pearson, R.G. Absolute Hardness: Companion Parameter to Absolute Electronegativity.J. Am. Chem. Soc.1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
https://doi.org/10.1021/ja00364a005

[19] Senet, P. Chemical Hardnesses of Atoms and Molecules from Frontier Orbitals. Chem. Phys. Lett. 1997, 275, 527-532. https://doi.org/10.1016/S0009-2614(97)00799-9
https://doi.org/10.1016/S0009-2614(97)00799-9

[20] Gázquez, J. L.; Cedillo, A.; Vela, A. Electrodonating and Electroaccepting Powers. J. Phys. Chem. A2007, 111, 1966-1970. https://doi.org/10.1021/jp065459f
https://doi.org/10.1021/jp065459f

[21] Domingo, L.R.; Chamorro, E.; Pérez, P.J. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624. https://doi.org/10.1021/jo800572a
https://doi.org/10.1021/jo800572a

[22] Lewis, G.N. Valence and the Structure of Atoms and Mole-cules, Chemical Catalog Company. New York, 1923.

[23] Abboud, J.-L.M.; Alkorta, I.; Dávalos, J.Z.; Gal, J.-F.; Herre-ros, M.; Maria, P.-C.; Mó, O.; Molina, M.T.; Notario, R.; Yáñez, M. The P4•••Li+ Ion in the Gas Phase:  A Planetary System. J. Am. Chem. Soc. 2000, 122, 4451-4454. https://doi.org/10.1021/ja9937324
https://doi.org/10.1021/ja9937324

[24] Cohen, A.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. Chem. Rev. 2012, 112, 289-320. https://doi.org/10.1021/cr200107z
https://doi.org/10.1021/cr200107z

[25] Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. et al. Gaussian 09: Gaussian Inc, Wallingford CT, 2016.

[26] Salvatori, T.; Dozzi, G.; Cucinella S. Synthesis of N-(Dimethylamino)propyliminodialanes. Inorganica Chim. Ac-ta1980,38, 263-265. https://doi.org/10.1016/S0020-1693(00)91970-4
https://doi.org/10.1016/S0020-1693(00)91970-4

[27] Arnett, E.M.; Quirk, R.P.; Burke, J.J. Weak Bases in Strong Acids. III. Heats of Ionization of Amines in Fluorosulfuric and Sulfuric Acids. New General Basicity Scale. J. Am. Chem. Soc.1970, 92, 1260-1266. https://doi.org/10.1021/ja00708a026
https://doi.org/10.1021/ja00708a026

[28] Gold, V. Glossary of Terms Used in Physical Organic Chemistry. Pure Appl. Chem. 1983, 55, 1281-1371. https://doi.org/10.1351/pac198355081281
https://doi.org/10.1351/pac198355081281

[29] Gal, J.F.; Maria, P.C.; Raczynska, E.D. Thermochemical Aspects of Proton Transfer in the Gas Phase. J. Mass Spectrum. 2001, 36, 699-716. https://doi.org/10.1002/jms.202
https://doi.org/10.1002/jms.202

[30] Padmaja, L.; Ravikumar, C.; Sajan, D. Density Functional Study on the Structural Conformations and Intramolecular Charge Transfer from the Vibrational Spectra of the Anticancer Drug Com-bretastatin-A2. J. Raman Spectroscopy2009, 40, 419-428. https://doi.org/10.1002/jrs.2145
https://doi.org/10.1002/jrs.2145

[31] Depmeier, W.; Schmid, H.; Setter, N.; Werk, M.L. Structure of cubic Aluminate Sodalite, Sr8[Al12O24](CrO4)2. Acta Cryst. 1987, C43, 2251-2255 https://doi.org/10.1107/S0108270187088188
https://doi.org/10.1107/S0108270187088188

[32] Fiacco, D.L.; Mo, Y.; Hunt, S.W.; Ott, M.E.; Roberts, A.; Leopord, K.R. Dipole Moments of Partially Bound Lewis Ac-id−Base Adducts. J. Pys. Chem A2001, 105, 484-493. https://doi.org/10.1021/jp0031810
https://doi.org/10.1021/jp0031810

[33] Weinhold, F. Natural Bond Orbital Methods. In Encyclopedia of Computational Chemistry, vol.3; John Wiley & Sons, Inc.: New York, 1998.