| Attachment | Size |
|---|---|
| 441.78 KB |
[1] Peña-Méndez, E.M.; Havel, J.; Patočka, J. Humic Substances - Compounds of Still Unknown Structure: Applications in Agriculture, Industry, Environment, and Biomedicine. J. Appl. Biomed. 2005, 3, 13-24. https://doi.org/10.32725/jab.2005.002
https://doi.org/10.32725/jab.2005.002
[2] Baglieri, A.; Ioppolo, A.; Nègre, M.; Gennari, M. A Method for Isolating Soil Organic Matter after the Extraction of Humic and Fulvic Acids. Org. Geochem. 2007, 38, 140-150. https://doi.org/10.1016/j.orggeochem.2006.07.007
https://doi.org/10.1016/j.orggeochem.2006.07.007
[3] Tiwari, J.; Al Ramanathan; Bauddh, K.; Korstad, J. Humic Substance: Structure, Function and Benefits for Agroecosystems - A Review. Pedosphere 2023, 33, 237-249. https://doi.org/10.1016/j.pedsph.2022.07.008
https://doi.org/10.1016/j.pedsph.2022.07.008
[4] Prandini, M. N.; Rahmayanti, M. Effect pH Adsorption of Naphtol Dye Using Humic Acid Adsorbent Result of Peat Isolation from Kalimantan. Proc. Int. Conf. Sci. Eng. 2020, 3, 147-151. https://doi.org/10.14421/icse.v3.486
https://doi.org/10.14421/icse.v3.486
[5] Jarukas, L.; Ivanauskas, L.; Kasparaviciene, G.; Baranauskaite, J.; Marksa, M.; Bernatoniene, J. Determination of Organic Compounds, Fulvic Acid, Humic Acid, and Humin in Peat and Sapropel Alkaline Extracts. Molecules 2021, 26, 2995. https://doi.org/10.3390/molecules26102995
https://doi.org/10.3390/molecules26102995
[6] Bibak, A. Cobalt, Copper, and Manganese Adsorption by Aluminium and Iron Oxides and Humic Acid. Commun. Soil Sci. Plant Anal. 1994, 25, 3229-3239. https://doi.org/10.1080/00103629409369261
https://doi.org/10.1080/00103629409369261
[7] Shaw, P.J. The Effect of pH, Dissolved Humic Substances, and Ionic Composition on the Transfer of Iron and Phosphate to Particulate Size Fractions in Epilimnetic Lake Water. Limnol. Oceanogr. 1994, 39, 1734-1743. https://doi.org/10.4319/lo.1994.39.7.1734
https://doi.org/10.4319/lo.1994.39.7.1734
[8] Ashworth, D.J.; Alloway, B.J. Influence of Dissolved Organic Matter on the Solubility of Heavy Metals in Sewage-Sludge-Amended Soils. Commun. Soil Sci. Plant Anal. 2008, 39, 538-550. https://doi.org/10.1080/00103620701826787
https://doi.org/10.1080/00103620701826787
[9] Rodríguez-Vila, A.; Asensio, V.; Forján, R.; Covelo, E.F. Remediation of a Copper Mine Soil with Organic Amendments: Compost and Biochar versus Technosol and Biochar. Span. J. Soil Sci. 2015, 5, 130-143. https://doi.org/10.3232/SJSS.2015.V5.N2.03
https://doi.org/10.3232/SJSS.2015.V5.N2.03
[10] Soler-Rovira, P.; Madejón, E.; Madejón, P.; Plaza, C. In Situ Remediation of Metal-Contaminated Soils with Organic Amendments: Role of Humic Acids in Copper Bioavailability. Chemosphere 2010, 79, 844-849. https://doi.org/10.1016/j.chemosphere.2010.02.054
https://doi.org/10.1016/j.chemosphere.2010.02.054
[11] Hbaieb, R.; Soubrand, M.; Joussein, E.; Medhioub, M.; Casellas, M.; Gady, C.; Saladin, G. Assisted Phytostabilisation of As, Pb and Sb-Contaminated Technosols with Mineral and Organic Amendments Using Douglas Fir (Pseudotsuga menziesii (Mirb.) Franco). Environ. Sci. Pollut. Res. 2018, 25, 32292-32302. https://doi.org/10.1007/s11356-018-3213-6
https://doi.org/10.1007/s11356-018-3213-6
[12] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357-364. https://doi.org/10.23939/chcht17.02.357
https://doi.org/10.23939/chcht17.02.357
[13] Miroshnichenko, D.; Lebedev, V.; Shved, M.; Fedevych, O.; Pyshyev, S. Valorization of Lignite Use in "Green" Technologies: A Review. Chem. Chem. Technol. 2025, 19, 157-173. https://doi.org/10.23939/chcht19.01.157
https://doi.org/10.23939/chcht19.01.157
[14] Melnykov, A.; Miroshnichenko, D.; Karnozhytskyi, P.P.; Karnozhytskyi, P.V. Sorption Properties of Brown Coal Processing Products. Chem. Chem. Technol. 2024, 18, 493-501. https://doi.org/10.23939/chcht18.04.493
https://doi.org/10.23939/chcht18.04.493
[15] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) With Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740-747. https://doi.org/10.23939/chcht17.04.740
https://doi.org/10.23939/chcht17.04.740
[16] Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental Fate and Impacts of Microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
https://doi.org/10.1016/j.scitotenv.2019.134841
[17] Rahman, A.M.; Hasan, M.A.; Rahim, A.; Alam, A.M.S. Characterization of Humic Acid from the River Bottom Sediments of Burigonga: Complexation Studies of Metals with Humic Acid. Pak. J. Anal. Environ. Chem. 2010, 11, 42-52. https://www.researchgate.net/publication/259873702
[18] Mendez, M.O.; Maier, R.M. Phytoremediation of Mine Tailings in Temperate and Arid Environments. Rev. Environ. Sci. Biotechnol. 2008, 7, 47-59. https://doi.org/10.1007/s11157-007-9125-4
https://doi.org/10.1007/s11157-007-9125-4
[19] Hattab, N.; Soubrand, M.; Guégan, R.; Motelica-Heino, M.; Bourrat, X.; Faure, O.; Bouchardon, J.L. Effect of Organic Amendments on the Mobility of Trace Elements in Phytoremediated Techno-Soils: Role of the Humic Substances. Environ. Sci. Pollut. Res. 2014, 21, 10470-10480. https://doi.org/10.1007/s11356-014-2959-8
https://doi.org/10.1007/s11356-014-2959-8
[20] Tan, K.H. Humic Matter in Soil and the Environment; CRC Press, 2003. https://doi.org/10.1201/9780203912546
https://doi.org/10.1201/9780203912546
[21] Tipping, E. The Adsorption of Aquatic Humic Substances by Iron Oxides. Geochim. Cosmochim Acta 1981, 45, 191-199. https://doi.org/10.1016/0016-7037(81)90162-9
https://doi.org/10.1016/0016-7037(81)90162-9
[22] Benedetti, M.F.; Milne, C.J.; Kinniburgh, D.G.; Van Riemsdijk, W.H.; Koopal, L.K. Metal Ion Binding to Humic Substances: Application of the Non-Ideal Competitive Adsorption Model. Environ. Sci. Technol. 1995, 29, 446-457. https://doi.org/10.1021/es00002a022
https://doi.org/10.1021/es00002a022