Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Синтез і протипухлинна активність гібридів «амінотіазол – термінальна феноксисполука» та їхніх аналогів: короткий огляд

Yuliia Matiichuk1, Orest Chemerys1, Borys Zimenkovsky1, Iryna Drapak1, Vasyl Matiychuk2
Affiliation: 
1 Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine 2 Ivan Franko National University of Lviv, 6 Kyryla and Mefodia St., Lviv 79005, Ukraine v_matiychuk@ukr.net
DOI: 
https://doi.org/10.23939/chcht19.01.061
AttachmentSize
PDF icon full_text.pdf529.23 KB
Abstract: 
2-Амінотіазол і сполуки з термінальними феноксигрупами належать до привілейованих структур у медичній хімії. Сполуки, що містять ці два скафолди, викликають інтерес для дизайну нових фармакологічних засобів, зокрема для терапії злоякісних пухлин. Гібридизація, яка реалізується комбінацією обох привілейованих фрагментів через утворення ковалентних зв’язків, є перспективним підходом до пошуку сполук-лідерів. Отримані кон’югати можуть зв’язуватися з різноманітними рецепторами, і тому їхній синтез і фармакологічний скринінг є актуальним завданням сучасної медичної хімії. У цьому огляді висвітлено останні досягнення в галузі феноксіалкілациламінотіазолів і їхніх аналогів з протираковим потенціалом, що охоплює роботи, опубліковані за останні два десятиліття.
References: 

[1] Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of Anticancer Drugs: A Review. Talanta 2011, 85, 2265−2289. https://doi.org/10.1016/j.talanta.2011.08.034
[2] Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2024, 74, 229−263. https://doi.org/10.3322/caac.21834
[3] 2024 − First Year the US Expects More than 2M New Cases of Cancer. ACS Research News. https://www.cancer.org/research/acs-research-news/facts-and-figures-2024... (accesed 2024-01-17).
[4] Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023, 16, 299. https://doi.org/10.3390/ph16020299
[5] Onoabedje, E.; Okafor, S.; Akpomie, K.; Okoro, U. The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles. Chem. Chem. Technol. 2019, 13, 288–295. https://doi.org/10.23939/chcht13.03.288
[6] Kumar, N.; Goel, N. Heterocyclic Compounds: Importance in Anticancer Drug Discovery. Anticancer Agents Med Chem. 2022, 22, 3196−3207. https://doi.org/10.2174/1871520622666220404082648
[7] Mohammed, H.; Beebany, S.; Ali, U. Binuclear Malonohydrazide Dithiocarbamate Complexes of Ni(II), Pd(II) and Pt(II): Synthesis, Characterization, Antimicrobial Activity, and SEM Studies. Chem. Chem. Technol. 2024, 18, 331–341. https://doi.org/10.23939/chcht18.03.331
[8] Hardjono, S.; Siswodihardjo, S.; Pramono, P.; Darmanto, W. Correlation between in silico and in vitro Results of 1-(Benzoyloxy)urea and its Derivatives as Potential Anti-Cancer Drugs. Chem. Chem. Technol. 2017, 11, 19–24. https://doi.org/10.23939/chcht11.01.019
[9] Wan, Y.; Long, J.; Gao, H.; Tang, Z. 2-Aminothiazole: A Privileged Scaffold for the Discovery of Anti-Cancer Agents. Eur J Med Chem. 2021, 210, 112953. https://doi.org/10.1016/j.ejmech.2020.112953
[10] Alizadeh, S.R.; Hashemi, S.M. Development and Therapeutic Potential of 2-Aminothiazole Derivatives in Anticancer Drug Discovery. Med Chem Res. 2021, 30, 771−806. https://doi.org/10.1007/s00044-020-02686-2
[11] Das, D.; Sikdar, P.; Bairagi M. Recent Developments of 2-Aminothiazoles in Medicinal Chemistry. Eur J Med Chem. 2016, 109, 89−98. https://doi.org/10.1016/j.ejmech.2015.12.022
[12] Khalifa, M.E. Recent Developments and Biological Activities of 2-Aminothiazole Derivatives. Acta Chim Slov. 2018, 65, 1−22. https://doi.org/10.17344/acsi.2017.3547
[13] Farouk Elsadek, M.; Mohamed Ahmed, B.; Fawzi Farahat, M. An Overview on Synthetic 2-Aminothiazole-Based Compounds Associated with Four Biological Activities. Molecules 2021, 26, 1449. https://doi.org/10.3390/molecules26051449
[14] Kozyra, P.; Pitucha, M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci. 2022, 23, 8874. https://doi.org/10.3390/ijms23168874
[15] DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged Structures: Applications in Drug Discovery. Comb Chem High Throughput Screen. 2004, 7, 473−494. https://doi.org/10.2174/1386207043328544
[16] Deb, P.K.; Al-Attraqchi, O.; Jaber, A.Y.; Amarji, B.; Tekade, R.K. Chapter 2—Physicochemical Aspects to Be Considered in Pharmaceutical Product Development. In Dosage Form Design Considerations.Vol. 1. Advances in Pharmaceutical Product Development and Research; Tekade R.K., Ed; Academic Press: Cambridge, MA, USA, 2018; pp. 57–83. https://doi.org/10.1016/B978-0-12-814423-7.00002-2
[17] Christensen, S.B. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021, 26, 6057. https://doi.org/10.3390/molecules26196057
[18] Hamido, A.J.; Sirika, N.B.; Omar, I.A. Literature Review on Antibiotics. J. Clin. Med. Res. 2022, 2, 174–182. https://doi.org/10.18535/cmhrj.v2i4.65
[19] Jakopin, Ž. 2-aminothiazoles in Drug Discovery: Privileged Structures or Toxicophores? Chem Biol Interact. 2020, 330, 109244. https://doi.org/10.1016/j.cbi.2020.109244
[20] Obach, R.S.; Kalgutkar, A.S.; Ryder, T.F.; Walker, G.S. In vitro Metabolism and Covalent Binding of Enol-Carboxamide Derivatives and anti-Inflammatory Agents Sudoxicam and Meloxicam: Insights into the Hepatotoxicity of Sudoxicam. Chemical research in toxicology 2008, 21, 1890–1899. https://doi.org/10.1021/tx800185b
[21] Gediya, L.K.; Njar, V.C. Promise and Challenges in Drug Discovery and Development of Hybrid Anticancer Drugs. Expert Opin Drug Discov. 2009, 4, 1099–1111. https://doi.org/10.1517/17460440903341705
[22] Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-Containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships. Eur J Med Chem. 2019, 183, 111700. https://doi.org/10.1016/j.ejmech.2019.111700
[23] Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr Med Chem. 2007, 14, 1829–1852. https://doi.org/10.2174/092986707781058805
[24] Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem. 2019, 19, 1694–1711. https://doi.org/10.2174/1568026619666190619115735
[25] Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucl. Acids Res. 2019, 47, W357–W364. https://doi.org/10.1093/nar/gkz382
[26] Daina, A.; Zoete, V. Testing the Predictive Power of Reverse Screening to Infer Drug Targets, with the Help of Machine Learning. Comms. Chem. 2024, 7, 105. https://doi.org/10.1038/s42004-024-01179-2
[27] Kannaiyan, R.; Mahadevan, D. A Comprehensive Review of Protein Kinase Inhibitors for Cancer Therapy. Expert Rev Anticancer Ther. 2018, 18, 1249–1270. https://doi.org/10.1080/14737140.2018.1527688
[28] Ye, H.; Wang, L.; Ma, L.; Ionov, M.; Qiao, G.; Huang, J.; Cheng, L.; Zhang, Y.; Yang, X.; Cao, S.; et al. Protein Kinases as Therapeutic Targets to Develop Anticancer Drugs with Natural Alkaloids. Front Biosci (Landmark Ed) 2021, 26, 1349–1361. https://doi.org/10.52586/5028
[29] Ertl, P.; Altmann, E.; McKenna, J.M. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J Med Chem. 2020, 63, 8408–8418. https://doi.org/10.1021/acs.jmedchem.0c00754
[30] El-Sayed, A.; Nossier, E.; Almehizia, A.; Amr, Abd El-Galil. Design, Synthesis, Anticancer Evaluation and Molecular Docking Study of novel 2,4-Dichlorophenoxymethyl-based Derivatives Linked to Nitrogenous Heterocyclic Ring Systems as Potential CDK-2 Inhibitors. J Mol Struct. 2021, 1247, 131285. https://doi.org/10.1016/j.molstruc.2021.131285
[31] Joshi, H.; Patil, V.; Tilekar, K.; Upadhyay, N.; Gota, V.; Ramaa, C.S. Benzylidene Thiazolidinediones: Synthesis, in vitro Investigations of Antiproliferative Mechanisms and in vivo Efficacy Determination in Combination with Imatinib. Bioorg Med Chem Lett. 2020, 30, 127561. https://doi.org/10.1016/j.bmcl.2020.127561
[32] Patil, V.; Tilekar, K.; Mehendale-Munj, S.; Mohan, R.; Ramaa, C.S. Synthesis and Primary Cytotoxicity Evaluation of New 5-Benzylidene-2,4-Thiazolidinedione Derivatives. Eur J Med Chem. 2010, 45, 4539–4544. https://doi.org/10.1016/j.ejmech.2010.07.014
[33] Tilekar, K.; Hess, J.D.; Upadhyay, N.; Bianco, A.L.; Schweipert, M.; Laghezza, A.; Loiodice, F.; Meyer-Almes, F.J.; Aguilera, R.J.; Lavecchia, A.; et al. Thiazolidinedione "Magic Bullets" Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J Med Chem. 2021, 64, 6949–6971. https://doi.org/10.1021/acs.jmedchem.1c00491
[34] Ramos, J.; Muthukumaran, J.; Freire, F.; Paquete-Ferreira, J.; Otrelo-Cardoso, A.R.; Svergun, D.; Panjkovich, A.; Santos-Silva, T. Shedding Light on the Interaction of Human Anti-Apoptotic Bcl-2 Protein with Ligands through Biophysical and in Silico Studies. Int J Mol Sci. 2019, 20, 860. https://doi.org/10.3390/ijms20040860
[35] Mah, S.; Jang, J.; Song, D.; Shin, Y.; Latif, M.; Jung, Y.; Hong, S. Discovery of Fluorescent 3-Heteroarylcoumarin Derivatives as Novel Inhibitors of Anaplastic Lymphoma Kinase. Org Biomol Chem. 2018, 17, 186–194. https://doi.org/10.1039/c8ob02874e
[36] Ankenbruck, N.; Kumbhare, R.; Naro, Y.; Thomas, M.; Gardner, L.; Emanuelson, C.; Deiters, A. Small Molecule Inhibition of Microrna-21 Expression Reduces Cell Viability and Microtumor Formation. Bioorg Med Chem. 2019, 27, 3735–3743. https://doi.org/10.1016/j.bmc.2019.05.044
[37] Brown, N. Bioisosteres in Medicinal Chemistry, 1st ed.; Wiley-VCH, 2012.
[38] Jayashree, B.S.; Nikhil, P.S.; Paul, S. Bioisosterism in Drug Discovery and Development - An Overview. Med Chem. 2022, 18, 915–925. https://doi.org/10.2174/1573406418666220127124228
[39] Li, H.; Wang, X.; Duan, G.; Xia, C.; Xiao, Y.; Li, F.; Ge, Y.; You, G.; Han, J.; Fu, X.; et al. Synthesis, Antitumor Activity and Preliminary Structure-Activity Relationship of 2-Aminothiazole Derivatives. Chem. Res. Chin. Univ. 2016, 32, 929–937. https://doi.org/10.1007/s40242-016-6304-2
[40] Salih, O.M.; Al-Sha'er, M.A.; Basheer, H.A. Novel 2-Aminobenzothiazole Derivatives: Docking, Synthesis, and Biological Evaluation as Anticancer Agents. ACS Omega. 2024, 9, 13928–13950. https://doi.org/10.1021/acsomega.3c09212
[41] Hussein, E.M.; Malik, M.S.; Alsantali, R. I.; Asghar, B.H.; Morad, M.; Ansari, M.A.; Jamal, Q.M.S.; Alsimaree, A.A.; Abdalla, A.N.; Algarni, A.S.; et al. Bioactive Fluorenes. Part IV: Design, Synthesis, and a Combined in vitro, in Silico Anticancer and Antibacterial Evaluation of New Fluorene-Heterocyclic Sulfonamide Conjugates. J Mol Struct. 2021, 1246, 131232. https://doi.org/10.1016/j.molstruc.2021.131232
[42] Patel, A.B.; Chikhalia, K.H.; Kumari, P. Access to Antimycobacterial and Anticancer Potential of Some Fused Quinazolines. Res Chem Intermed. 2015, 41, 4439–4455. https://doi.org/10.1007/s11164-014-1542-8
[43] Cheng, M.P.; Abou Chakra, C.N.; Yansouni, C.P.; Cnossen, S.; Shrier, I.; Menzies, D.; Greenaway, C. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin Infect Dis. 2017, 64, 635–644. https://doi.org/10.1093/cid/ciw838
[44] Everatt, R.; Kuzmickiene, I.; Davidaviciene, E.; Cicenas, S. Incidence of Lung Cancer Among Patients with Tuberculosis: A Nationwide Cohort Study in Lithuania. Int J Tuberc Lung Dis. 2016, 20, 757–763. https://doi.org/10.5588/ijtld.15.0783
[45] Ho, J.C.; Leung, C.C. Management of Co-Existent Tuberculosis and Lung Cancer. Lung Cancer. 2018, 122, 83–87. https://doi.org/10.1016/j.lungcan.2018.05.030
[46] Oh, C.M.; Roh, Y.H.; Lim, D.; Kong, H.J.; Cho, H.; Hwangbo, B.; Won, Y.J.; Jung, K.W.; Oh, K. Pulmonary tuberculosis is associated with elevated risk of lung cancer in Korea: The Nationwide Cohort Study. J Cancer. 2020, 11, 1899–1906. https://doi.org/10.7150/jca.37022
[47] Wermuth, C.G. Wermuth’s The Practice of Medicinal Chemistry, 3rd ed.; Elsevier Ltd, 2008.
[48] Kubinyi, H. Chemical Similarity and Biological Activities. J. Braz. Chem. Soc. 2002, 13, 717–726. https://doi.org/10.1590/S0103-50532002000600002
[49] Assadieskandar, A.; Yu, C.; Maisonneuve, P.; Kurinov, I.; Sicheri, F.; Zhang, C. Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Med Chem Lett. 2019, 10, 1074–1080. https://doi.org/10.1021/acsmedchemlett.9b00194
[50] Matiichuk, Y.; Ostapiuk, Y.; Chaban, T.; Sulyma, M.; Sukhodolska, N.; Matiychuk, V. Synthesis and Anticancer Activity of Novel Benzofurancarboxamides. Biointerface Res. Appl. Chem. 2020, 10, 6597–6609. https://doi.org/10.33263/BRIAC106.65976609
[51] Choi, M.J.; Lee, H.; Lee, J.H.; Jung, K.H.; Kim, D.; Hong, S.; Hong, S.S. The Effect of HS-111, a Novel Thiazolamine Derivative, on Apoptosis and Angiogenesis of Hepatocellular Carcinoma Cells. Arch Pharm Res. 2012, 35, 747–754. https://doi.org/10.1007/s12272-012-0420-4
[52] Choi, M.J.; Jung, K.H.; Kim, D.; Lee, H.; Zheng, H.M.; Park, B.H.; Hong, S.W.; Kim, M.H.; Hong, S.; Hong, S.S. Anti-Cancer Effects of a Novel Compound HS-113 on Cell Growth, Apoptosis, and Angiogenesis in Human Hepatocellular Carcinoma Cells. Cancer Lett. 2011, 306, 190–196. https://doi.org/10.1016/j.canlet.2011.03.005
[53] Finiuk, N.; Klyuchivska, O.; Ivasechko, I.; Hreniukh, V.; Ostapiuk, Y.; Shalai, Y.; Panchuk, R.; Matiychuk, V.; Obushak, M.; Stoika, R. et all. Proapoptotic Effects of Novel Thiazole Derivative on Human Glioma Cells. Anti-Cancer Drugs 2019, 30, 27–37. https://doi.org/10.1097/CAD.0000000000000686
[54] Hranjec, M.; Sović, I.; Ratkaj, I.; Pavlović, G.; Ilić, N.; Valjalo, L.; Pavelić, K.; Kraljević Pavelić, S.; Karminski-Zamola, G. Antiproliferative Potency of Novel Benzofuran-2-carboxamides on Tumour Cell Lines: Cell Death Mechanisms and Determination of Crystal Structure. Eur J Med Chem. 2013, 59, 111–119. https://doi.org/10.1016/j.ejmech.2012.11.009
[55] El-Damasy, A.K.; Lee, J.H.; Seo, S.H.; Cho, N.C.; Pae, A.N.; Keum, G. Design and Synthesis of New Potent Anticancer Benzothiazole Amides and Ureas Featuring Pyridylamide Moiety and Possessing Dual B-Raf(V600E) and C-Raf Kinase Inhibitory Activities. Eur J Med Chem. 2016, 115, 201–216. https://doi.org/10.1016/j.ejmech.2016.02.039
[56] Cindrić, M.; Perić, M.; Kralj, M.; Martin-Kleiner, I.; David-Cordonnier, M.H.; Paljetak, H.Č.; Matijašić, M.; Verbanac, D.; Karminski-Zamola, G.; Hranjec, M. Antibacterial and Antiproliferative Activity of Novel 2-Benzimidazolyl- and 2-Benzothiazolyl-substituted Benzo[b]thieno-2-carboxamides. Mol Divers. 2018, 22, 637–646. https://doi.org/10.1007/s11030-018-9822-7
[57] Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec M. Eur J Med Chem. 2017, 136, 468–479. https://doi.org/10.1016/j.ejmech.2017.05.014