Attachment | Size |
---|---|
![]() | 529.23 KB |
[1] Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of Anticancer Drugs: A Review. Talanta 2011, 85, 2265−2289. https://doi.org/10.1016/j.talanta.2011.08.034
https://doi.org/10.1016/j.talanta.2011.08.034
[2] Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2024, 74, 229−263. https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
[3] 2024 − First Year the US Expects More than 2M New Cases of Cancer. ACS Research News. https://www.cancer.org/research/acs-research-news/facts-and-figures-2024... (accesed 2024-01-17).
[4] Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023, 16, 299. https://doi.org/10.3390/ph16020299
https://doi.org/10.3390/ph16020299
[5] Onoabedje, E.; Okafor, S.; Akpomie, K.; Okoro, U. The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles. Chem. Chem. Technol. 2019, 13, 288-295. https://doi.org/10.23939/chcht13.03.288
https://doi.org/10.23939/chcht13.03.288
[6] Kumar, N.; Goel, N. Heterocyclic Compounds: Importance in Anticancer Drug Discovery. Anticancer Agents Med Chem. 2022, 22, 3196−3207. https://doi.org/10.2174/1871520622666220404082648
https://doi.org/10.2174/1871520622666220404082648
[7] Mohammed, H.; Beebany, S.; Ali, U. Binuclear Malonohydrazide Dithiocarbamate Complexes of Ni(II), Pd(II) and Pt(II): Synthesis, Characterization, Antimicrobial Activity, and SEM Studies. Chem. Chem. Technol. 2024, 18, 331-341. https://doi.org/10.23939/chcht18.03.331
https://doi.org/10.23939/chcht18.03.331
[8] Hardjono, S.; Siswodihardjo, S.; Pramono, P.; Darmanto, W. Correlation between in silico and in vitro Results of 1-(Benzoyloxy)urea and its Derivatives as Potential Anti-Cancer Drugs. Chem. Chem. Technol. 2017, 11, 19-24. https://doi.org/10.23939/chcht11.01.019
https://doi.org/10.23939/chcht11.01.019
[9] Wan, Y.; Long, J.; Gao, H.; Tang, Z. 2-Aminothiazole: A Privileged Scaffold for the Discovery of Anti-Cancer Agents. Eur J Med Chem. 2021, 210, 112953. https://doi.org/10.1016/j.ejmech.2020.112953
https://doi.org/10.1016/j.ejmech.2020.112953
[10] Alizadeh, S.R.; Hashemi, S.M. Development and Therapeutic Potential of 2-Aminothiazole Derivatives in Anticancer Drug Discovery. Med Chem Res. 2021, 30, 771−806. https://doi.org/10.1007/s00044-020-02686-2
https://doi.org/10.1007/s00044-020-02686-2
[11] Das, D.; Sikdar, P.; Bairagi M. Recent Developments of 2-Aminothiazoles in Medicinal Chemistry. Eur J Med Chem. 2016, 109, 89−98. https://doi.org/10.1016/j.ejmech.2015.12.022
https://doi.org/10.1016/j.ejmech.2015.12.022
[12] Khalifa, M.E. Recent Developments and Biological Activities of 2-Aminothiazole Derivatives. Acta Chim Slov. 2018, 65, 1−22. https://doi.org/10.17344/acsi.2017.3547
https://doi.org/10.17344/acsi.2017.3547
[13] Farouk Elsadek, M.; Mohamed Ahmed, B.; Fawzi Farahat, M. An Overview on Synthetic 2-Aminothiazole-Based Compounds Associated with Four Biological Activities. Molecules 2021, 26, 1449. https://doi.org/10.3390/molecules26051449
https://doi.org/10.3390/molecules26051449
[14] Kozyra, P.; Pitucha, M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci. 2022, 23, 8874. https://doi.org/10.3390/ijms23168874
https://doi.org/10.3390/ijms23168874
[15] DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged Structures: Applications in Drug Discovery. Comb Chem High Throughput Screen. 2004, 7, 473−494. https://doi.org/10.2174/1386207043328544
https://doi.org/10.2174/1386207043328544
[16] Deb, P.K.; Al-Attraqchi, O.; Jaber, A.Y.; Amarji, B.; Tekade, R.K. Chapter 2-Physicochemical Aspects to Be Considered in Pharmaceutical Product Development. In Dosage Form Design Considerations.Vol. 1. Advances in Pharmaceutical Product Development and Research; Tekade R.K., Ed; Academic Press: Cambridge, MA, USA, 2018; pp. 57-83. https://doi.org/10.1016/B978-0-12-814423-7.00002-2
https://doi.org/10.1016/B978-0-12-814423-7.00002-2
[17] Christensen, S.B. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021, 26, 6057. https://doi.org/10.3390/molecules26196057
https://doi.org/10.3390/molecules26196057
[18] Hamido, A.J.; Sirika, N.B.; Omar, I.A. Literature Review on Antibiotics. J. Clin. Med. Res. 2022, 2, 174-182. https://doi.org/10.18535/cmhrj.v2i4.65
https://doi.org/10.18535/cmhrj.v2i4.65
[19] Jakopin, Ž. 2-aminothiazoles in Drug Discovery: Privileged Structures or Toxicophores? Chem Biol Interact. 2020, 330, 109244. https://doi.org/10.1016/j.cbi.2020.109244
https://doi.org/10.1016/j.cbi.2020.109244
[20] Obach, R.S.; Kalgutkar, A.S.; Ryder, T.F.; Walker, G.S. In vitro Metabolism and Covalent Binding of Enol-Carboxamide Derivatives and anti-Inflammatory Agents Sudoxicam and Meloxicam: Insights into the Hepatotoxicity of Sudoxicam. Chemical research in toxicology 2008, 21, 1890-1899. https://doi.org/10.1021/tx800185b
https://doi.org/10.1021/tx800185b
[21] Gediya, L.K.; Njar, V.C. Promise and Challenges in Drug Discovery and Development of Hybrid Anticancer Drugs. Expert Opin Drug Discov. 2009, 4, 1099-1111. https://doi.org/10.1517/17460440903341705
https://doi.org/10.1517/17460440903341705
[22] Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-Containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships. Eur J Med Chem. 2019, 183, 111700. https://doi.org/10.1016/j.ejmech.2019.111700
https://doi.org/10.1016/j.ejmech.2019.111700
[23] Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr Med Chem. 2007, 14, 1829-1852. https://doi.org/10.2174/092986707781058805
https://doi.org/10.2174/092986707781058805
[24] Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem. 2019, 19, 1694-1711. https://doi.org/10.2174/1568026619666190619115735
https://doi.org/10.2174/1568026619666190619115735
[25] Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucl. Acids Res. 2019, 47, W357-W364. https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1093/nar/gkz382
[26] Daina, A.; Zoete, V. Testing the Predictive Power of Reverse Screening to Infer Drug Targets, with the Help of Machine Learning. Comms. Chem. 2024, 7, 105. https://doi.org/10.1038/s42004-024-01179-2
https://doi.org/10.1038/s42004-024-01179-2
[27] Kannaiyan, R.; Mahadevan, D. A Comprehensive Review of Protein Kinase Inhibitors for Cancer Therapy. Expert Rev Anticancer Ther. 2018, 18, 1249-1270. https://doi.org/10.1080/14737140.2018.1527688
https://doi.org/10.1080/14737140.2018.1527688
[28] Ye, H.; Wang, L.; Ma, L.; Ionov, M.; Qiao, G.; Huang, J.; Cheng, L.; Zhang, Y.; Yang, X.; Cao, S.; et al. Protein Kinases as Therapeutic Targets to Develop Anticancer Drugs with Natural Alkaloids. Front Biosci (Landmark Ed) 2021, 26, 1349-1361. https://doi.org/10.52586/5028
https://doi.org/10.52586/5028
[29] Ertl, P.; Altmann, E.; McKenna, J.M. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J Med Chem. 2020, 63, 8408-8418. https://doi.org/10.1021/acs.jmedchem.0c00754
https://doi.org/10.1021/acs.jmedchem.0c00754
[30] El-Sayed, A.; Nossier, E.; Almehizia, A.; Amr, Abd El-Galil. Design, Synthesis, Anticancer Evaluation and Molecular Docking Study of novel 2,4-Dichlorophenoxymethyl-based Derivatives Linked to Nitrogenous Heterocyclic Ring Systems as Potential CDK-2 Inhibitors. J Mol Struct. 2021, 1247, 131285. https://doi.org/10.1016/j.molstruc.2021.131285
https://doi.org/10.1016/j.molstruc.2021.131285
[31] Joshi, H.; Patil, V.; Tilekar, K.; Upadhyay, N.; Gota, V.; Ramaa, C.S. Benzylidene Thiazolidinediones: Synthesis, in vitro Investigations of Antiproliferative Mechanisms and in vivo Efficacy Determination in Combination with Imatinib. Bioorg Med Chem Lett. 2020, 30, 127561. https://doi.org/10.1016/j.bmcl.2020.127561
https://doi.org/10.1016/j.bmcl.2020.127561
[32] Patil, V.; Tilekar, K.; Mehendale-Munj, S.; Mohan, R.; Ramaa, C.S. Synthesis and Primary Cytotoxicity Evaluation of New 5-Benzylidene-2,4-Thiazolidinedione Derivatives. Eur J Med Chem. 2010, 45, 4539-4544. https://doi.org/10.1016/j.ejmech.2010.07.014
https://doi.org/10.1016/j.ejmech.2010.07.014
[33] Tilekar, K.; Hess, J.D.; Upadhyay, N.; Bianco, A.L.; Schweipert, M.; Laghezza, A.; Loiodice, F.; Meyer-Almes, F.J.; Aguilera, R.J.; Lavecchia, A.; et al. Thiazolidinedione "Magic Bullets" Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J Med Chem. 2021, 64, 6949-6971. https://doi.org/10.1021/acs.jmedchem.1c00491
https://doi.org/10.1021/acs.jmedchem.1c00491
[34] Ramos, J.; Muthukumaran, J.; Freire, F.; Paquete-Ferreira, J.; Otrelo-Cardoso, A.R.; Svergun, D.; Panjkovich, A.; Santos-Silva, T. Shedding Light on the Interaction of Human Anti-Apoptotic Bcl-2 Protein with Ligands through Biophysical and in Silico Studies. Int J Mol Sci. 2019, 20, 860. https://doi.org/10.3390/ijms20040860
https://doi.org/10.3390/ijms20040860
[35] Mah, S.; Jang, J.; Song, D.; Shin, Y.; Latif, M.; Jung, Y.; Hong, S. Discovery of Fluorescent 3-Heteroarylcoumarin Derivatives as Novel Inhibitors of Anaplastic Lymphoma Kinase. Org Biomol Chem. 2018, 17, 186-194. https://doi.org/10.1039/c8ob02874e
https://doi.org/10.1039/C8OB02874E
[36] Ankenbruck, N.; Kumbhare, R.; Naro, Y.; Thomas, M.; Gardner, L.; Emanuelson, C.; Deiters, A. Small Molecule Inhibition of Microrna-21 Expression Reduces Cell Viability and Microtumor Formation. Bioorg Med Chem. 2019, 27, 3735-3743. https://doi.org/10.1016/j.bmc.2019.05.044
https://doi.org/10.1016/j.bmc.2019.05.044
[37] Brown, N. Bioisosteres in Medicinal Chemistry, 1st ed.; Wiley-VCH, 2012.
https://doi.org/10.1002/9783527654307.ch1
[38] Jayashree, B.S.; Nikhil, P.S.; Paul, S. Bioisosterism in Drug Discovery and Development - An Overview. Med Chem. 2022, 18, 915-925. https://doi.org/10.2174/1573406418666220127124228
https://doi.org/10.2174/1573406418666220127124228
[39] Li, H.; Wang, X.; Duan, G.; Xia, C.; Xiao, Y.; Li, F.; Ge, Y.; You, G.; Han, J.; Fu, X.; et al. Synthesis, Antitumor Activity and Preliminary Structure-Activity Relationship of 2-Aminothiazole Derivatives. Chem. Res. Chin. Univ. 2016, 32, 929-937. https://doi.org/10.1007/s40242-016-6304-2
https://doi.org/10.1007/s40242-016-6304-2
[40] Salih, O.M.; Al-Sha'er, M.A.; Basheer, H.A. Novel 2-Aminobenzothiazole Derivatives: Docking, Synthesis, and Biological Evaluation as Anticancer Agents. ACS Omega. 2024, 9, 13928-13950. https://doi.org/10.1021/acsomega.3c09212
https://doi.org/10.1021/acsomega.3c09212
[41] Hussein, E.M.; Malik, M.S.; Alsantali, R. I.; Asghar, B.H.; Morad, M.; Ansari, M.A.; Jamal, Q.M.S.; Alsimaree, A.A.; Abdalla, A.N.; Algarni, A.S.; et al. Bioactive Fluorenes. Part IV: Design, Synthesis, and a Combined in vitro, in Silico Anticancer and Antibacterial Evaluation of New Fluorene-Heterocyclic Sulfonamide Conjugates. J Mol Struct. 2021, 1246, 131232. https://doi.org/10.1016/j.molstruc.2021.131232
https://doi.org/10.1016/j.molstruc.2021.131232
[42] Patel, A.B.; Chikhalia, K.H.; Kumari, P. Access to Antimycobacterial and Anticancer Potential of Some Fused Quinazolines. Res Chem Intermed. 2015, 41, 4439-4455. https://doi.org/10.1007/s11164-014-1542-8
https://doi.org/10.1007/s11164-014-1542-8
[43] Cheng, M.P.; Abou Chakra, C.N.; Yansouni, C.P.; Cnossen, S.; Shrier, I.; Menzies, D.; Greenaway, C. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin Infect Dis. 2017, 64, 635-644. https://doi.org/10.1093/cid/ciw838
https://doi.org/10.1093/cid/ciw838
[44] Everatt, R.; Kuzmickiene, I.; Davidaviciene, E.; Cicenas, S. Incidence of Lung Cancer Among Patients with Tuberculosis: A Nationwide Cohort Study in Lithuania. Int J Tuberc Lung Dis. 2016, 20, 757-763. https://doi.org/10.5588/ijtld.15.0783
https://doi.org/10.5588/ijtld.15.0783
[45] Ho, J.C.; Leung, C.C. Management of Co-Existent Tuberculosis and Lung Cancer. Lung Cancer. 2018, 122, 83-87. https://doi.org/10.1016/j.lungcan.2018.05.030
https://doi.org/10.1016/j.lungcan.2018.05.030
[46] Oh, C.M.; Roh, Y.H.; Lim, D.; Kong, H.J.; Cho, H.; Hwangbo, B.; Won, Y.J.; Jung, K.W.; Oh, K. Pulmonary tuberculosis is associated with elevated risk of lung cancer in Korea: The Nationwide Cohort Study. J Cancer. 2020, 11, 1899-1906. https://doi.org/10.7150/jca.37022
https://doi.org/10.7150/jca.37022
[47] Wermuth, C.G. Wermuth's The Practice of Medicinal Chemistry, 3rd ed.; Elsevier Ltd, 2008.
[48] Kubinyi, H. Chemical Similarity and Biological Activities. J. Braz. Chem. Soc. 2002, 13, 717-726. https://doi.org/10.1590/S0103-50532002000600002
https://doi.org/10.1590/S0103-50532002000600002
[49] Assadieskandar, A.; Yu, C.; Maisonneuve, P.; Kurinov, I.; Sicheri, F.; Zhang, C. Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Med Chem Lett. 2019, 10, 1074-1080. https://doi.org/10.1021/acsmedchemlett.9b00194
https://doi.org/10.1021/acsmedchemlett.9b00194
[50] Matiichuk, Y.; Ostapiuk, Y.; Chaban, T.; Sulyma, M.; Sukhodolska, N.; Matiychuk, V. Synthesis and Anticancer Activity of Novel Benzofurancarboxamides. Biointerface Res. Appl. Chem. 2020, 10, 6597-6609. https://doi.org/10.33263/BRIAC106.65976609
https://doi.org/10.33263/BRIAC106.65976609
[51] Choi, M.J.; Lee, H.; Lee, J.H.; Jung, K.H.; Kim, D.; Hong, S.; Hong, S.S. The Effect of HS-111, a Novel Thiazolamine Derivative, on Apoptosis and Angiogenesis of Hepatocellular Carcinoma Cells. Arch Pharm Res. 2012, 35, 747-754. https://doi.org/10.1007/s12272-012-0420-4
https://doi.org/10.1007/s12272-012-0420-4
[52] Choi, M.J.; Jung, K.H.; Kim, D.; Lee, H.; Zheng, H.M.; Park, B.H.; Hong, S.W.; Kim, M.H.; Hong, S.; Hong, S.S. Anti-Cancer Effects of a Novel Compound HS-113 on Cell Growth, Apoptosis, and Angiogenesis in Human Hepatocellular Carcinoma Cells. Cancer Lett. 2011, 306, 190-196. https://doi.org/10.1016/j.canlet.2011.03.005
https://doi.org/10.1016/j.canlet.2011.03.005
[53] Finiuk, N.; Klyuchivska, O.; Ivasechko, I.; Hreniukh, V.; Ostapiuk, Y.; Shalai, Y.; Panchuk, R.; Matiychuk, V.; Obushak, M.; Stoika, R. et all. Proapoptotic Effects of Novel Thiazole Derivative on Human Glioma Cells. Anti-Cancer Drugs 2019, 30, 27-37. https://doi.org/10.1097/CAD.0000000000000686
https://doi.org/10.1097/CAD.0000000000000686
[54] Hranjec, M.; Sović, I.; Ratkaj, I.; Pavlović, G.; Ilić, N.; Valjalo, L.; Pavelić, K.; Kraljević Pavelić, S.; Karminski-Zamola, G. Antiproliferative Potency of Novel Benzofuran-2-carboxamides on Tumour Cell Lines: Cell Death Mechanisms and Determination of Crystal Structure. Eur J Med Chem. 2013, 59, 111-119. https://doi.org/10.1016/j.ejmech.2012.11.009
https://doi.org/10.1016/j.ejmech.2012.11.009
[55] El-Damasy, A.K.; Lee, J.H.; Seo, S.H.; Cho, N.C.; Pae, A.N.; Keum, G. Design and Synthesis of New Potent Anticancer Benzothiazole Amides and Ureas Featuring Pyridylamide Moiety and Possessing Dual B-Raf(V600E) and C-Raf Kinase Inhibitory Activities. Eur J Med Chem. 2016, 115, 201-216. https://doi.org/10.1016/j.ejmech.2016.02.039
https://doi.org/10.1016/j.ejmech.2016.02.039
[56] Cindrić, M.; Perić, M.; Kralj, M.; Martin-Kleiner, I.; David-Cordonnier, M.H.; Paljetak, H.Č.; Matijašić, M.; Verbanac, D.; Karminski-Zamola, G.; Hranjec, M. Antibacterial and Antiproliferative Activity of Novel 2-Benzimidazolyl- and 2-Benzothiazolyl-substituted Benzo[b]thieno-2-carboxamides. Mol Divers. 2018, 22, 637-646. https://doi.org/10.1007/s11030-018-9822-7
https://doi.org/10.1007/s11030-018-9822-7
[57] Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec M. Eur J Med Chem. 2017, 136, 468-479. https://doi.org/10.1016/j.ejmech.2017.05.014
https://doi.org/10.1016/j.ejmech.2017.05.014