Synthesis and Anticancer Activity of Aminothiazole-Terminal Phenoxycompounds Hybrids and Their Analogs: A Short Review

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Yuliia Matiichuk1, Orest Chemerys1, Borys Zimenkovsky1, Iryna Drapak1, Vasyl Matiychuk2
Affiliation: 
1 Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv 79010, Ukraine 2 Ivan Franko National University of Lviv, 6 Kyryla and Mefodia St., Lviv 79005, Ukraine v_matiychuk@ukr.net
DOI: 
https://doi.org/10.23939/chcht19.01.061
AttachmentSize
PDF icon full_text.pdf529.23 KB
Abstract: 
2-Aminothiazole and compounds with terminal phenoxy groups are privileged structures in medicinal chemistry. Compounds containing these two scaffolds are of interest for the design of new pharmaceuticals, particularly for treating malignant tumors. Hybridization, which is realized by combining both privileged fragments via the formation of covalent bonds, is a promising approach to finding lead compounds. The resulting conjugates can bind to a variety of receptors, and therefore, their synthesis and pharmacological screening is an actual task of modern medicinal chemistry. This review highlights the latest advances in the field of phenoxyalkylacylamino thiazoles and their analogs with anticancer potential, covering work published over the past two decades.
References: 

[1] Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of Anticancer Drugs: A Review. Talanta 2011, 85, 2265−2289. https://doi.org/10.1016/j.talanta.2011.08.034
https://doi.org/10.1016/j.talanta.2011.08.034

[2] Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2024, 74, 229−263. https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834

[3] 2024 − First Year the US Expects More than 2M New Cases of Cancer. ACS Research News. https://www.cancer.org/research/acs-research-news/facts-and-figures-2024... (accesed 2024-01-17).

[4] Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; et al. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023, 16, 299. https://doi.org/10.3390/ph16020299
https://doi.org/10.3390/ph16020299

[5] Onoabedje, E.; Okafor, S.; Akpomie, K.; Okoro, U. The Synthesis and Theoretical Anti-Tumor Studies of Some New Monoaza-10H-Phenothiazine and 10H-Phenoxazine Heterocycles. Chem. Chem. Technol. 2019, 13, 288-295. https://doi.org/10.23939/chcht13.03.288
https://doi.org/10.23939/chcht13.03.288

[6] Kumar, N.; Goel, N. Heterocyclic Compounds: Importance in Anticancer Drug Discovery. Anticancer Agents Med Chem. 2022, 22, 3196−3207. https://doi.org/10.2174/1871520622666220404082648
https://doi.org/10.2174/1871520622666220404082648

[7] Mohammed, H.; Beebany, S.; Ali, U. Binuclear Malonohydrazide Dithiocarbamate Complexes of Ni(II), Pd(II) and Pt(II): Synthesis, Characterization, Antimicrobial Activity, and SEM Studies. Chem. Chem. Technol. 2024, 18, 331-341. https://doi.org/10.23939/chcht18.03.331
https://doi.org/10.23939/chcht18.03.331

[8] Hardjono, S.; Siswodihardjo, S.; Pramono, P.; Darmanto, W. Correlation between in silico and in vitro Results of 1-(Benzoyloxy)urea and its Derivatives as Potential Anti-Cancer Drugs. Chem. Chem. Technol. 2017, 11, 19-24. https://doi.org/10.23939/chcht11.01.019
https://doi.org/10.23939/chcht11.01.019

[9] Wan, Y.; Long, J.; Gao, H.; Tang, Z. 2-Aminothiazole: A Privileged Scaffold for the Discovery of Anti-Cancer Agents. Eur J Med Chem. 2021, 210, 112953. https://doi.org/10.1016/j.ejmech.2020.112953
https://doi.org/10.1016/j.ejmech.2020.112953

[10] Alizadeh, S.R.; Hashemi, S.M. Development and Therapeutic Potential of 2-Aminothiazole Derivatives in Anticancer Drug Discovery. Med Chem Res. 2021, 30, 771−806. https://doi.org/10.1007/s00044-020-02686-2
https://doi.org/10.1007/s00044-020-02686-2

[11] Das, D.; Sikdar, P.; Bairagi M. Recent Developments of 2-Aminothiazoles in Medicinal Chemistry. Eur J Med Chem. 2016, 109, 89−98. https://doi.org/10.1016/j.ejmech.2015.12.022
https://doi.org/10.1016/j.ejmech.2015.12.022

[12] Khalifa, M.E. Recent Developments and Biological Activities of 2-Aminothiazole Derivatives. Acta Chim Slov. 2018, 65, 1−22. https://doi.org/10.17344/acsi.2017.3547
https://doi.org/10.17344/acsi.2017.3547

[13] Farouk Elsadek, M.; Mohamed Ahmed, B.; Fawzi Farahat, M. An Overview on Synthetic 2-Aminothiazole-Based Compounds Associated with Four Biological Activities. Molecules 2021, 26, 1449. https://doi.org/10.3390/molecules26051449
https://doi.org/10.3390/molecules26051449

[14] Kozyra, P.; Pitucha, M. Terminal Phenoxy Group as a Privileged Moiety of the Drug Scaffold-A Short Review of Most Recent Studies 2013-2022. Int J Mol Sci. 2022, 23, 8874. https://doi.org/10.3390/ijms23168874
https://doi.org/10.3390/ijms23168874

[15] DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged Structures: Applications in Drug Discovery. Comb Chem High Throughput Screen. 2004, 7, 473−494. https://doi.org/10.2174/1386207043328544
https://doi.org/10.2174/1386207043328544

[16] Deb, P.K.; Al-Attraqchi, O.; Jaber, A.Y.; Amarji, B.; Tekade, R.K. Chapter 2-Physicochemical Aspects to Be Considered in Pharmaceutical Product Development. In Dosage Form Design Considerations.Vol. 1. Advances in Pharmaceutical Product Development and Research; Tekade R.K., Ed; Academic Press: Cambridge, MA, USA, 2018; pp. 57-83. https://doi.org/10.1016/B978-0-12-814423-7.00002-2
https://doi.org/10.1016/B978-0-12-814423-7.00002-2

[17] Christensen, S.B. Drugs That Changed Society: History and Current Status of the Early Antibiotics: Salvarsan, Sulfonamides, and β-Lactams. Molecules 2021, 26, 6057. https://doi.org/10.3390/molecules26196057
https://doi.org/10.3390/molecules26196057

[18] Hamido, A.J.; Sirika, N.B.; Omar, I.A. Literature Review on Antibiotics. J. Clin. Med. Res. 2022, 2, 174-182. https://doi.org/10.18535/cmhrj.v2i4.65
https://doi.org/10.18535/cmhrj.v2i4.65

[19] Jakopin, Ž. 2-aminothiazoles in Drug Discovery: Privileged Structures or Toxicophores? Chem Biol Interact. 2020, 330, 109244. https://doi.org/10.1016/j.cbi.2020.109244
https://doi.org/10.1016/j.cbi.2020.109244

[20] Obach, R.S.; Kalgutkar, A.S.; Ryder, T.F.; Walker, G.S. In vitro Metabolism and Covalent Binding of Enol-Carboxamide Derivatives and anti-Inflammatory Agents Sudoxicam and Meloxicam: Insights into the Hepatotoxicity of Sudoxicam. Chemical research in toxicology 2008, 21, 1890-1899. https://doi.org/10.1021/tx800185b
https://doi.org/10.1021/tx800185b

[21] Gediya, L.K.; Njar, V.C. Promise and Challenges in Drug Discovery and Development of Hybrid Anticancer Drugs. Expert Opin Drug Discov. 2009, 4, 1099-1111. https://doi.org/10.1517/17460440903341705
https://doi.org/10.1517/17460440903341705

[22] Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-Containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships. Eur J Med Chem. 2019, 183, 111700. https://doi.org/10.1016/j.ejmech.2019.111700
https://doi.org/10.1016/j.ejmech.2019.111700

[23] Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr Med Chem. 2007, 14, 1829-1852. https://doi.org/10.2174/092986707781058805
https://doi.org/10.2174/092986707781058805

[24] Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem. 2019, 19, 1694-1711. https://doi.org/10.2174/1568026619666190619115735
https://doi.org/10.2174/1568026619666190619115735

[25] Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucl. Acids Res. 2019, 47, W357-W364. https://doi.org/10.1093/nar/gkz382
https://doi.org/10.1093/nar/gkz382

[26] Daina, A.; Zoete, V. Testing the Predictive Power of Reverse Screening to Infer Drug Targets, with the Help of Machine Learning. Comms. Chem. 2024, 7, 105. https://doi.org/10.1038/s42004-024-01179-2
https://doi.org/10.1038/s42004-024-01179-2

[27] Kannaiyan, R.; Mahadevan, D. A Comprehensive Review of Protein Kinase Inhibitors for Cancer Therapy. Expert Rev Anticancer Ther. 2018, 18, 1249-1270. https://doi.org/10.1080/14737140.2018.1527688
https://doi.org/10.1080/14737140.2018.1527688

[28] Ye, H.; Wang, L.; Ma, L.; Ionov, M.; Qiao, G.; Huang, J.; Cheng, L.; Zhang, Y.; Yang, X.; Cao, S.; et al. Protein Kinases as Therapeutic Targets to Develop Anticancer Drugs with Natural Alkaloids. Front Biosci (Landmark Ed) 2021, 26, 1349-1361. https://doi.org/10.52586/5028
https://doi.org/10.52586/5028

[29] Ertl, P.; Altmann, E.; McKenna, J.M. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J Med Chem. 2020, 63, 8408-8418. https://doi.org/10.1021/acs.jmedchem.0c00754
https://doi.org/10.1021/acs.jmedchem.0c00754

[30] El-Sayed, A.; Nossier, E.; Almehizia, A.; Amr, Abd El-Galil. Design, Synthesis, Anticancer Evaluation and Molecular Docking Study of novel 2,4-Dichlorophenoxymethyl-based Derivatives Linked to Nitrogenous Heterocyclic Ring Systems as Potential CDK-2 Inhibitors. J Mol Struct. 2021, 1247, 131285. https://doi.org/10.1016/j.molstruc.2021.131285
https://doi.org/10.1016/j.molstruc.2021.131285

[31] Joshi, H.; Patil, V.; Tilekar, K.; Upadhyay, N.; Gota, V.; Ramaa, C.S. Benzylidene Thiazolidinediones: Synthesis, in vitro Investigations of Antiproliferative Mechanisms and in vivo Efficacy Determination in Combination with Imatinib. Bioorg Med Chem Lett. 2020, 30, 127561. https://doi.org/10.1016/j.bmcl.2020.127561
https://doi.org/10.1016/j.bmcl.2020.127561

[32] Patil, V.; Tilekar, K.; Mehendale-Munj, S.; Mohan, R.; Ramaa, C.S. Synthesis and Primary Cytotoxicity Evaluation of New 5-Benzylidene-2,4-Thiazolidinedione Derivatives. Eur J Med Chem. 2010, 45, 4539-4544. https://doi.org/10.1016/j.ejmech.2010.07.014
https://doi.org/10.1016/j.ejmech.2010.07.014

[33] Tilekar, K.; Hess, J.D.; Upadhyay, N.; Bianco, A.L.; Schweipert, M.; Laghezza, A.; Loiodice, F.; Meyer-Almes, F.J.; Aguilera, R.J.; Lavecchia, A.; et al. Thiazolidinedione "Magic Bullets" Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects. J Med Chem. 2021, 64, 6949-6971. https://doi.org/10.1021/acs.jmedchem.1c00491
https://doi.org/10.1021/acs.jmedchem.1c00491

[34] Ramos, J.; Muthukumaran, J.; Freire, F.; Paquete-Ferreira, J.; Otrelo-Cardoso, A.R.; Svergun, D.; Panjkovich, A.; Santos-Silva, T. Shedding Light on the Interaction of Human Anti-Apoptotic Bcl-2 Protein with Ligands through Biophysical and in Silico Studies. Int J Mol Sci. 2019, 20, 860. https://doi.org/10.3390/ijms20040860
https://doi.org/10.3390/ijms20040860

[35] Mah, S.; Jang, J.; Song, D.; Shin, Y.; Latif, M.; Jung, Y.; Hong, S. Discovery of Fluorescent 3-Heteroarylcoumarin Derivatives as Novel Inhibitors of Anaplastic Lymphoma Kinase. Org Biomol Chem. 2018, 17, 186-194. https://doi.org/10.1039/c8ob02874e
https://doi.org/10.1039/C8OB02874E

[36] Ankenbruck, N.; Kumbhare, R.; Naro, Y.; Thomas, M.; Gardner, L.; Emanuelson, C.; Deiters, A. Small Molecule Inhibition of Microrna-21 Expression Reduces Cell Viability and Microtumor Formation. Bioorg Med Chem. 2019, 27, 3735-3743. https://doi.org/10.1016/j.bmc.2019.05.044
https://doi.org/10.1016/j.bmc.2019.05.044

[37] Brown, N. Bioisosteres in Medicinal Chemistry, 1st ed.; Wiley-VCH, 2012.
https://doi.org/10.1002/9783527654307.ch1

[38] Jayashree, B.S.; Nikhil, P.S.; Paul, S. Bioisosterism in Drug Discovery and Development - An Overview. Med Chem. 2022, 18, 915-925. https://doi.org/10.2174/1573406418666220127124228
https://doi.org/10.2174/1573406418666220127124228

[39] Li, H.; Wang, X.; Duan, G.; Xia, C.; Xiao, Y.; Li, F.; Ge, Y.; You, G.; Han, J.; Fu, X.; et al. Synthesis, Antitumor Activity and Preliminary Structure-Activity Relationship of 2-Aminothiazole Derivatives. Chem. Res. Chin. Univ. 2016, 32, 929-937. https://doi.org/10.1007/s40242-016-6304-2
https://doi.org/10.1007/s40242-016-6304-2

[40] Salih, O.M.; Al-Sha'er, M.A.; Basheer, H.A. Novel 2-Aminobenzothiazole Derivatives: Docking, Synthesis, and Biological Evaluation as Anticancer Agents. ACS Omega. 2024, 9, 13928-13950. https://doi.org/10.1021/acsomega.3c09212
https://doi.org/10.1021/acsomega.3c09212

[41] Hussein, E.M.; Malik, M.S.; Alsantali, R. I.; Asghar, B.H.; Morad, M.; Ansari, M.A.; Jamal, Q.M.S.; Alsimaree, A.A.; Abdalla, A.N.; Algarni, A.S.; et al. Bioactive Fluorenes. Part IV: Design, Synthesis, and a Combined in vitro, in Silico Anticancer and Antibacterial Evaluation of New Fluorene-Heterocyclic Sulfonamide Conjugates. J Mol Struct. 2021, 1246, 131232. https://doi.org/10.1016/j.molstruc.2021.131232
https://doi.org/10.1016/j.molstruc.2021.131232

[42] Patel, A.B.; Chikhalia, K.H.; Kumari, P. Access to Antimycobacterial and Anticancer Potential of Some Fused Quinazolines. Res Chem Intermed. 2015, 41, 4439-4455. https://doi.org/10.1007/s11164-014-1542-8
https://doi.org/10.1007/s11164-014-1542-8

[43] Cheng, M.P.; Abou Chakra, C.N.; Yansouni, C.P.; Cnossen, S.; Shrier, I.; Menzies, D.; Greenaway, C. Risk of Active Tuberculosis in Patients with Cancer: A Systematic Review and Meta-Analysis. Clin Infect Dis. 2017, 64, 635-644. https://doi.org/10.1093/cid/ciw838
https://doi.org/10.1093/cid/ciw838

[44] Everatt, R.; Kuzmickiene, I.; Davidaviciene, E.; Cicenas, S. Incidence of Lung Cancer Among Patients with Tuberculosis: A Nationwide Cohort Study in Lithuania. Int J Tuberc Lung Dis. 2016, 20, 757-763. https://doi.org/10.5588/ijtld.15.0783
https://doi.org/10.5588/ijtld.15.0783

[45] Ho, J.C.; Leung, C.C. Management of Co-Existent Tuberculosis and Lung Cancer. Lung Cancer. 2018, 122, 83-87. https://doi.org/10.1016/j.lungcan.2018.05.030
https://doi.org/10.1016/j.lungcan.2018.05.030

[46] Oh, C.M.; Roh, Y.H.; Lim, D.; Kong, H.J.; Cho, H.; Hwangbo, B.; Won, Y.J.; Jung, K.W.; Oh, K. Pulmonary tuberculosis is associated with elevated risk of lung cancer in Korea: The Nationwide Cohort Study. J Cancer. 2020, 11, 1899-1906. https://doi.org/10.7150/jca.37022
https://doi.org/10.7150/jca.37022

[47] Wermuth, C.G. Wermuth's The Practice of Medicinal Chemistry, 3rd ed.; Elsevier Ltd, 2008.

[48] Kubinyi, H. Chemical Similarity and Biological Activities. J. Braz. Chem. Soc. 2002, 13, 717-726. https://doi.org/10.1590/S0103-50532002000600002
https://doi.org/10.1590/S0103-50532002000600002

[49] Assadieskandar, A.; Yu, C.; Maisonneuve, P.; Kurinov, I.; Sicheri, F.; Zhang, C. Rigidification Dramatically Improves Inhibitor Selectivity for RAF Kinases. ACS Med Chem Lett. 2019, 10, 1074-1080. https://doi.org/10.1021/acsmedchemlett.9b00194
https://doi.org/10.1021/acsmedchemlett.9b00194

[50] Matiichuk, Y.; Ostapiuk, Y.; Chaban, T.; Sulyma, M.; Sukhodolska, N.; Matiychuk, V. Synthesis and Anticancer Activity of Novel Benzofurancarboxamides. Biointerface Res. Appl. Chem. 2020, 10, 6597-6609. https://doi.org/10.33263/BRIAC106.65976609
https://doi.org/10.33263/BRIAC106.65976609

[51] Choi, M.J.; Lee, H.; Lee, J.H.; Jung, K.H.; Kim, D.; Hong, S.; Hong, S.S. The Effect of HS-111, a Novel Thiazolamine Derivative, on Apoptosis and Angiogenesis of Hepatocellular Carcinoma Cells. Arch Pharm Res. 2012, 35, 747-754. https://doi.org/10.1007/s12272-012-0420-4
https://doi.org/10.1007/s12272-012-0420-4

[52] Choi, M.J.; Jung, K.H.; Kim, D.; Lee, H.; Zheng, H.M.; Park, B.H.; Hong, S.W.; Kim, M.H.; Hong, S.; Hong, S.S. Anti-Cancer Effects of a Novel Compound HS-113 on Cell Growth, Apoptosis, and Angiogenesis in Human Hepatocellular Carcinoma Cells. Cancer Lett. 2011, 306, 190-196. https://doi.org/10.1016/j.canlet.2011.03.005
https://doi.org/10.1016/j.canlet.2011.03.005

[53] Finiuk, N.; Klyuchivska, O.; Ivasechko, I.; Hreniukh, V.; Ostapiuk, Y.; Shalai, Y.; Panchuk, R.; Matiychuk, V.; Obushak, M.; Stoika, R. et all. Proapoptotic Effects of Novel Thiazole Derivative on Human Glioma Cells. Anti-Cancer Drugs 2019, 30, 27-37. https://doi.org/10.1097/CAD.0000000000000686
https://doi.org/10.1097/CAD.0000000000000686

[54] Hranjec, M.; Sović, I.; Ratkaj, I.; Pavlović, G.; Ilić, N.; Valjalo, L.; Pavelić, K.; Kraljević Pavelić, S.; Karminski-Zamola, G. Antiproliferative Potency of Novel Benzofuran-2-carboxamides on Tumour Cell Lines: Cell Death Mechanisms and Determination of Crystal Structure. Eur J Med Chem. 2013, 59, 111-119. https://doi.org/10.1016/j.ejmech.2012.11.009
https://doi.org/10.1016/j.ejmech.2012.11.009

[55] El-Damasy, A.K.; Lee, J.H.; Seo, S.H.; Cho, N.C.; Pae, A.N.; Keum, G. Design and Synthesis of New Potent Anticancer Benzothiazole Amides and Ureas Featuring Pyridylamide Moiety and Possessing Dual B-Raf(V600E) and C-Raf Kinase Inhibitory Activities. Eur J Med Chem. 2016, 115, 201-216. https://doi.org/10.1016/j.ejmech.2016.02.039
https://doi.org/10.1016/j.ejmech.2016.02.039

[56] Cindrić, M.; Perić, M.; Kralj, M.; Martin-Kleiner, I.; David-Cordonnier, M.H.; Paljetak, H.Č.; Matijašić, M.; Verbanac, D.; Karminski-Zamola, G.; Hranjec, M. Antibacterial and Antiproliferative Activity of Novel 2-Benzimidazolyl- and 2-Benzothiazolyl-substituted Benzo[b]thieno-2-carboxamides. Mol Divers. 2018, 22, 637-646. https://doi.org/10.1007/s11030-018-9822-7
https://doi.org/10.1007/s11030-018-9822-7

[57] Cindrić, M.; Jambon, S.; Harej, A.; Depauw, S.; David-Cordonnier, M.H.; Kraljević Pavelić, S.; Karminski-Zamola, G.; Hranjec M. Eur J Med Chem. 2017, 136, 468-479. https://doi.org/10.1016/j.ejmech.2017.05.014
https://doi.org/10.1016/j.ejmech.2017.05.014