Плівки на основі карбоксиметилцелюлози з рисової стерні як нове потенційне джерело біополімерів для зменшення відходів сільського господарства: мініогляд
Attachment | Size |
---|---|
full_text.pdf | 627.13 KB |
[1] Khasanah, I. N.; Astuti, K. Luas Panen Dan Produksi Padi Di Indonesia 2022.
[2] Wafiroh, S.; Abdulloh, A.; Widati, A. A. Cellulose Acetate Hollow Fiber Membranes from Banana Stem Fibers Coated by Tio2 for Degradation of Waste Textile Dye. Chem. Chem. Technol. 2021, 15, 291–298. https://doi.org/10.23939/chcht15.02.291
[3] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[4] David, G.; Gontard, N.; Angellier-Coussy, H. Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification. Polymers (Basel) 2019, 11, 200–218. https://doi.org/10.3390/polym11020200
[5] Bifani, V.; Ramírez, C.; Ihl, M.; Rubilar, M.; García, A.; Zaritzky, N. Effects of Murta (Ugni Molinae Turcz) Extract on Gas and Water Vapor Permeability of Carboxymethylcellulose-Based Edible Films. LWT 2007, 40, 1473–1481. https://doi.org/10.1016/j.lwt.2006.03.011
[6] Mali, S.; Grossmann, M. V. E.; García, M. A.; Martino, M. N.; Zaritzky, N. E. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Starch Sources. J Food Eng 2006, 75, 453–460. https://doi.org/10.1016/j.jfoodeng.2005.04.031
[7] Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends in Food Science and Technology; Elsevier Ltd June 1, 2021; pp 532–546. https://doi.org/10.1016/j.tifs.2021.04.016
[8] Arik Kibar, E. A.; Us, F. Thermal, Mechanical and Water Adsorption Properties of Corn Starch-Carboxymethylcellulose/Methylcellulose Biodegradable Films. J Food Eng 2013, 114, 123–131. https://doi.org/10.1016/j.jfoodeng.2012.07.034
[9] Ghanbarzadeh, B.; Almasi, H.; Entezami, A. A. Physical Properties of Edible Modified Starch/Carboxymethyl Cellulose Films. Innovative Food Science and Emerging Technologies 2010, 11, 697–702. https://doi.org/10.1016/j.ifset.2010.06.001
[10] Petersson, M.; Stading, M. Water Vapour Permeability and Mechanical Properties of Mixed Starch-Monoglyceride Films and Effect of Film Forming Conditions. Food Hydrocoll 2005, 19, 123–132. https://doi.org/10.1016/j.foodhyd.2004.04.021
[11] Cao, N.; Yang, X.; Fu, Y. Effects of Various Plasticizers on Mechanical and Water Vapor Barrier Properties of Gelatin Films. Food Hydrocoll 2009, 23, 729–735. https://doi.org/10.1016/j.foodhyd.2008.07.017
[12] Ma, W.; Tang, C. H.; Yin, S. W.; Yang, X. Q.; Qi, J. R.; Xia, N. Effect of Homogenization Conditions on Properties of Gelatin-Olive Oil Composite Films. J Food Eng 2012, 113, 136–142. https://doi.org/10.1016/j.jfoodeng.2012.05.007
[13] López-Miranda, J.; Pérez-Martinez, P.; Pérez-Jiménez, F. Health Benefits of Monounsaturated Fatty Acids. In Improving the Fat Content of Foods; Elsevier Ltd, 2006; pp 71–106. https://doi.org/10.1533/9781845691073.1.71
[14] Ohkawa, K. Nanofibers of Cellulose and Its Derivatives Fabricated Using Direct Electrospinning. Molecules MDPI AG 2015, 9139–9154. https://doi.org/10.3390/molecules20059139
[15] Suganya, V.; Anuradha, V. Microencapsulation and Nanoencapsulation: A Review. International Journal of Pharmaceutical and Clinical Research 2017, 9, 233–239. https://doi.org/10.25258/ijpcr.v9i3.8324
[16] Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Ghorbani, M.; Samadi Kafil, H. Fabrication of Cumin Seed Oil Loaded Gliadin-Ethyl Cellulose Nanofibers Reinforced with Adipic Acid for Food Packaging Application. Food Packag Shelf Life 2021, 30, 100754–100763. https://doi.org/10.1016/j.fpsl.2021.100754
[17] Rajeswari, A.; Christy, E. J. S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environmental Chemistry and Ecotoxicology 2020, 2, 107–114. https://doi.org/10.1016/J.ENCECO.2020.07.003
[18] Guzman-Puyol, S.; Hierrezuelo, J.; Benítez, J. J.; Tedeschi, G.; Porras-Vázquez, J. M.; Heredia, A.; Athanassiou, A.; Romero, D.; Heredia-Guerrero, J. A. Transparent, UV-Blocking, and High Barrier Cellulose-Based Bioplastics with Naringin as Active Food Packaging Materials. Int J Biol Macromol 2022, 209, 1985–1994. https://doi.org/10.1016/J.IJBIOMAC.2022.04.177
[19] Guzman-Puyol, S.; Tedeschi, G.; Goldoni, L.; Benítez, J. J.; Ceseracciu, L.; Koschella, A.; Heinze, T.; Athanassiou, A.; Heredia-Guerrero, J. A. Greaseproof, Hydrophobic, and Biodegradable Food Packaging Bioplastics from C6-Fluorinated Cellulose Esters. Food Hydrocoll 2022, 128, 107562–107573. https://doi.org/10.1016/j.foodhyd.2022.107562
[20] Rao, J.; Shen, C.; Yang, Z.; Fawole, O. A.; Li, J.; Wu, D.; Chen, K. Facile Microfluidic Fabrication and Characterization of Ethyl Cellulose/PVP Films with Neatly Arranged Fibers. Carbohydr Polym 2022, 292, 119702. https://doi.org/10.1016/J.CARBPOL.2022.119702
[21] Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile Fabrication of Multifunctional Citrus Pectin Aerogel Fortified with Cellulose Nanofiber as Controlled Packaging of Edible Fungi. Food Chem 2022, 374, 131763. https://doi.org/10.1016/J.FOODCHEM.2021.131763
[22] Arun, R.; Shruthy, R.; Preetha, R.; Sreejit, V. Biodegradable Nano Composite Reinforced with Cellulose Nano Fiber from Coconut Industry Waste for Replacing Synthetic Plastic Food Packaging. Chemosphere 2022, 291, 132786. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132786
[23] Jancy, S.; Shruthy, R.; Preetha, R. Fabrication of Packaging Film Reinforced with Cellulose Nanoparticles Synthesised from Jack Fruit Non-Edible Part Using Response Surface Methodology. Int J Biol Macromol 2020, 142, 63–72. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.09.066
[24] Ding, Z.; Chang, X.; Fu, X.; Kong, H.; Yu, Y.; Xu, H.; Shan, Y.; Ding, S. Fabrication and Characterization of Pullulan-Based Composite Films Incorporated with Bacterial Cellulose and Ferulic Acid. Int J Biol Macromol 2022, 219, 121–137. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.07.236
[25] Rojas-Lema, S.; Nilsson, K.; Trifol, J.; Langton, M.; Gomez-Caturla, J.; Balart, R.; Garcia-Garcia, D.; Moriana, R. “Faba Bean Protein Films Reinforced with Cellulose Nanocrystals as Edible Food Packaging Material.” Food Hydrocoll 2021, 121, 107019. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107019
[26] Sharma, A.; Mandal, T.; Goswami, S. Fabrication of Cellulose Acetate Nanocomposite Films with Lignocelluosic Nanofiber Filler for Superior Effect on Thermal, Mechanical and Optical Properties. Nano-Structures & Nano-Objects 2021, 25, 100642. https://doi.org/https://doi.org/10.1016/j.nanoso.2020.100642
[27] Liu, Y.; Ma, Y.; Liu, Y.; Zhang, J.; Hossen, M. A.; Sameen, D. E.; Dai, J.; Li, S.; Qin, W. Fabrication and Characterization of pH-Responsive Intelligent Films Based on Carboxymethyl Cellulose and Gelatin/Curcumin/Chitosan Hybrid Microcapsules for Pork Quality Monitoring. Food Hydrocoll 2022, 124, 107224. https://doi.org/https://doi.org/10.1016/j.foodhyd.2021.107224
[28] Yang, Y.; Zheng, S.; Liu, Q.; Kong, B.; Wang, H. Fabrication and Characterization of Cinnamaldehyde Loaded Polysaccharide Composite Nanofiber Film as Potential Antimicrobial Packaging Material. Food Packag Shelf Life 2020, 26, 100600. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100600
[29] Roy, S.; Rhim, J.-W. Fabrication of Cellulose Nanofiber-Based Functional Color Indicator Film Incorporated with Shikonin Extracted from Lithospermum Erythrorhizon Root. Food Hydrocoll 2021, 114, 106566. https://doi.org/https://doi.org/10.1016/j.foodhyd.2020.106566
[30] el Fawal, G.; Hong, H.; Song, X.; Wu, J.; Sun, M.; He, C.; Mo, X.; Jiang, Y.; Wang, H. Fabrication of Antimicrobial Films Based on Hydroxyethylcellulose and ZnO for Food Packaging Application. Food Packag Shelf Life 2020, 23, 100462. https://doi.org/https://doi.org/10.1016/j.fpsl.2020.100462
[31] Roy, S.; Kim, H.-J.; Rhim, J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int J Biol Macromol 2021, 183, 305–315. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.04.162
[32] Zhang, A.; Zou, Y.; Xi, Y.; Wang, P.; Zhang, Y.; Wu, L.; Zhang, H. Fabrication and Characterization of Bamboo Shoot Cellulose/Sodium Alginate Composite Aerogels for Sustained Release of Curcumin. Int J Biol Macromol 2021, 192, 904–912. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.10.027
[33] Yeasmin, S.; Yeum, J. H.; Yang, S. B. Fabrication and Characterization of Pullulan-Based Nanocomposites Reinforced with Montmorillonite and Tempo Cellulose Nanofibril. Carbohydr Polym 2020, 240, 116307. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116307
[34] Sharmila, G.; Muthukumaran, C.; Kirthika, S.; Keerthana, S.; Kumar, N. M.; Jeyanthi, J. Fabrication and Characterization of Spinacia Oleracea Extract Incorporated Alginate/Carboxymethyl Cellulose Microporous Scaffold for Bone Tissue Engineering. Int J Biol Macromol 2020, 156, 430–437. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.04.059
[35] Qu, B.; Luo, Y. Preparation and Characterization of Carboxymethyl Cellulose Capped Zinc Oxide Nanoparticles: A Proof-of-Concept Study. Food Chem 2022, 389, 133001. https://doi.org/https://doi.org/10.1016/j.foodchem.2022.133001
[36] Rao, J.; Lv, Z.; Chen, G.; Hao, X.; Guan, Y.; Peng, F. Fabrication of Flexible Composite Film Based on Xylan from Pulping Process for Packaging Application. Int J Biol Macromol 2021, 173, 285–292. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2021.01.128
[37] Priyadarshi, R.; Kim, S.-M.; Rhim, J.-W. Carboxymethyl Cellulose-Based Multifunctional Film Combined with Zinc Oxide Nanoparticles and Grape Seed Extract for the Preservation of High-Fat Meat Products. Sustainable Materials and Technologies 2021, 29, e00325. https://doi.org/https://doi.org/10.1016/j.susmat.2021.e00325
[38] Rojas-Graü, M. A.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín‐Belloso, O. The Use of Packaging Techniques to Maintain Freshness in Fresh-Cut Fruits and Vegetables: A Review. Int J Food Sci Technol 2009, 44, 875–889.
[39] Jin, K.; Tang, Y.; Liu, J.; Wang, J.; Ye, C. Nanofibrillated Cellulose as Coating Agent for Food Packaging Paper. Int J Biol Macromol 2021, 168, 331–338. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.12.066
[40] Hazarika, K. K.; Konwar, A.; Borah, A.; Saikia, A.; Barman, P.; Hazarika, S. Cellulose Nanofiber Mediated Natural Dye Based Biodegradable Bag with Freshness Indicator for Packaging of Meat and Fish. Carbohydr Polym 2022, 120241. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.120241
[41] Komali, N. D.; Gaikwad, P. S.; Yadav, B. K. Fabrication of Cellulose Acetate Membrane for Monitoring Freshness of Minimally Processed Pomegranate (Punica Granatum) Arils. Food Biosci 2022, 49, 101945. https://doi.org/https://doi.org/10.1016/j.fbio.2022.101945
[42] Shi, C.; Ji, Z.; Zhang, J.; Jia, Z.; Yang, X. Preparation and Characterization of Intelligent Packaging Film for Visual Inspection of Tilapia Fillets Freshness Using Cyanidin and Bacterial Cellulose. Int J Biol Macromol 2022, 205, 357–365. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.02.072
[43] Ezati, P.; Tajik, H.; Moradi, M. Fabrication and Characterization of Alizarin Colorimetric Indicator Based on Cellulose-Chitosan to Monitor the Freshness of Minced Beef. Sens Actuators B Chem 2019, 285, 519–528. https://doi.org/https://doi.org/10.1016/j.snb.2019.01.089
[44] Indumathi, M. P.; Saral Sarojini, K.; Rajarajeswari, G. R. Antimicrobial and Biodegradable Chitosan/Cellulose Acetate Phthalate/ZnO Nano Composite Films with Optimal Oxygen Permeability and Hydrophobicity for Extending the Shelf Life of Black Grape Fruits. Int J Biol Macromol 2019, 132, 1112–1120. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.03.171
[45] Mohammadalinejhad, S.; Almasi, H.; Moradi, M. Immobilization of Echium Amoenum Anthocyanins into Bacterial Cellulose Film: A Novel Colorimetric pH Indicator for Freshness/Spoilage Monitoring of Shrimp. Food Control 2020, 113, 107169. https://doi.org/https://doi.org/10.1016/j.foodcont.2020.107169
[46] Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A Novel pH-Sensing Indicator Based on Bacterial Cellulose Nanofibers and Black Carrot Anthocyanins for Monitoring Fish Freshness. Carbohydr Polym 2019, 222, 115030. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115030
[47] Chen, J.; Zheng, M.; Tan, K. B.; Lin, J.; Chen, M.; Zhu, Y. Development of Xanthan Gum/Hydroxypropyl Methyl Cellulose Composite Films Incorporating Tea Polyphenol and Its Application on Fresh-Cut Green Bell Peppers Preservation. Int J Biol Macromol 2022, 211, 198–206. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.05.043
[48] Kang, S.; Xiao, Y.; Guo, X.; Huang, A.; Xu, H. Development of Gum Arabic-Based Nanocomposite Films Reinforced with Cellulose Nanocrystals for Strawberry Preservation. Food Chem 2021, 350, 129199. https://doi.org/https://doi.org/10.1016/j.foodchem.2021.129199
[49] Rodsamran, P.; Sothornvit, R. Carboxymethyl Cellulose from Rice Stubble Waste. Songklanakarin J. Sci. Technol. 2020, 42, 454–460.
[50] Yuangsawad, R.; Pramanusai, T.; Boontiangtrong, M. Synthesis and Properties of Carboxymethyl Cellulose Blend Films Derived from Rice Straw. Journal of Advanced Development in Engineering and Science 2023, 13, 95–108. Retrieved from https://ph03.tci-thaijo.org/index.php/pitjournal/article/view/598
[51] Yildirim-Yalcin, M.; Tornuk, F.; Toker, O. S. Recent Advances in the Improvement of Carboxymethyl Cellulose-Based Edible Films. Trends in Food Science and Technology 2022, 129, 179–193. https://doi.org/10.1016/j.tifs.2022.09.022
[52] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C 2022, 8, 71. https://doi.org/10.3390/c8040071
[53] Jouki, M.; Khazaei, N.; Ghasemlou, M.; Hadinezhad, M. Effect of Glycerol Concentration on Edible Film Production from Cress Seed Carbohydrate Gum. Carbohydr Polym 2013, 96, 39–46. https://doi.org/10.1016/j.carbpol.2013.03.077
[54] Ghanbarzadeh, B.; Almasi, H. Physical Properties of Edible Emulsified Films Based on Carboxymethyl Cellulose and Oleic Acid. Int J Biol Macromol 2011, 48, 44–49. https://doi.org/10.1016/j.ijbiomac.2010.09.014
[55] García, M. A.; Martino, M. N.; Zaritzky, N. E. Lipid Addition to Improve Barrier Properties of Edible Starch-Based Films and Coatings. J Food Sci 2000, 65, 941–947. https://doi.org/10.1111/j.1365-2621.2000.tb09397.x
[56] Pereda, M.; Amica, G.; Marcovich, N. E. Development and Characterization of Edible Chitosan/Olive Oil Emulsion Films. Carbohydr Polym 2012, 87, 1318–1325. https://doi.org/10.1016/j.carbpol.2011.09.019
[57] Rodsamran, P.; Sothornvit, R. Rice Stubble as a New Biopolymer Source to Produce Carboxymethyl Cellulose-Blended Films. Carbohydr Polym 2017, 171, 94–101. https://doi.org/10.1016/j.carbpol.2017.05.003
[58] Mchugh, T. H.; Aujard, J.-F.; Krochta, J. M. Plasticized Whey Protein Edible Films: Water Vapor Permeability Properties. J Food Sci 1994, 59, 416–419. https://doi.org/10.1111/j.1365-2621.1994.tb06980.x
[59] Liu, L.; Kerry, J. F.; Kerry, J. P. Effect of Food Ingredients and Selected Lipids on the Physical Properties of Extruded Edible Films/Casings. Int J Food Sci Technol 2006, 41, 295–302. https://doi.org/10.1111/j.1365-2621.2005.01063.x
[60] Javanmard, M.; Golestan, L. Effect of Olive Oil and Glycerol on Physical Properties of Whey Protein Concentrate Films. J Food Process Eng 2008, 31, 628–639. https://doi.org/10.1111/j.1745-4530.2007.00179.x