Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Магніточутливі нанокомпозити на вуглецевій основі для очищення стічних вод від барвників і важких металів: огляд

Nazar Nahurskyi1, Myroslav Malovanyy1, Ihor Bordun1, Ewelina Szymczykiewicz2
Affiliation: 
1 Lviv Polytechnic National University 12, S. Bandery St., Lviv 79013, Ukraine 2 Czestochowa University of Technology 69, Dabrowskiego str., Czestochowa 42-201, Poland nazar.o.nahurskyi@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.170
AttachmentSize
PDF icon full_text.pdf1.5 MB
Abstract: 
Проаналізовано методи очищення стічних вод від іонів важких металів і барвників, показано ключові переваги порошкових магніточутливих вуглецевих нанокомпозитів як адсорбентів. Розглянуто методи вибору та підготовки сировини й активаторів для синтезу таких нанокомпозитів, проаналізовано методики синтезу нанокомпозитів. Описано властивості, моделювання кінетики й ізотерм адсорбції, ефективність застосування магнітних вуглецевих нанокомпозитів для очищення стічних вод від барвників і важких металів.
References: 

[1] Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M., Alexis, F.; Guerrero, V. H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504
[2] Vasiichuk, V.; Kurylets, O.; Nahurskyy, O.; Kuchera, Y.; Bukliv, R.; Kalymon, Y. Obtaining New Aluminium Water Clarification Coagulant from Spent Catalyst. Ecol. Eng. Environ. Technol. 2022, 23, 47–53. https://doi.org/10.12912/27197050/147147
[3] Malovanyy, M. S.; Synelnikov, S. D.; Nagurskiy, O. A.; Soloviy, K. M.; Tymchuk, I. S. Utilization of sorted secondary PET waste-raw materials in the context of sustainable development of the modern city. In IOP Conf. Ser.: Mater. Sci. Eng. 2020, 907, 012067. https://doi.org/10.1088/1757-899X/907/1/012067
[4] Garg, V. K.; Kumar, R.; Gupta, R. Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigm. 2004, 62, 1–10. https://doi.org/10.1016/j.dyepig.2003.10.016
[5] Verma, R.; Dwivedi, P. Heavy metal water pollution-A case study. Recent Research in Science and Technology 2013, 5, 98–99.
[6] Razzak, S. A.; Faruque, M. O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.; Hossain, M.M. A comprehensive review on conventional and biological-driven heavy metals removal from industrial wastewater. Environ. Adv. 2022, 7, 100168. https://doi.org/10.1016/j.envadv.2022.100168
[7] Moosavi, S.; Lai, C. W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M. R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 2020, 5, 20684–20697. https://doi.org/10.1021/acsomega.0c01905
[8] Nahurskyi, O.; Krylova, H.; Vasiichuk, V.; Kachan, S.; Nahursky, A.; Paraniak, N.; Sabadash, V.; Malovanyy, M. Utilization of Household Plastic Waste in Technologies with Final Biodegradation. Ecol. Eng. Environ. Technol. 2022, 23, 94–100. https://doi.org/10.12912/27197050/150234
[9] Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A. P.; Kim, H. Y.; Joshi, M. K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. https://doi.org/10.1016/j.jece.2021.105688
[10] Nagurskyy, O.; Krylova H.; Vasiichuk, V.; Kachan, S.; Dziurakh, Y.; Nahursky, A.; Paraniak, N. Safety Usage of Encapsulated Mineral Fertilizers Based on Polymeric Waste. Ecol. Eng. Environ. Technol. 2022, 23, 156–161. https://doi.org/10.12912/27197050/143139
[11] Qasem, N. A.; Mohammed, R. H.; Lawal, D. U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water. 2021, 4, 36. https://doi.org/10.1038/s41545-021-00127-0
[12] Tee, G. T.; Gok, X. Y.; Yong, W. F. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environ. Res. 2022, 212, 113248. https://doi.org/10.1016/j.envres.2022.113248
[13] Sharma, A.; Mangla, D.; Chaudhry, S. A. Recent advances in magnetic composites as adsorbents for wastewater remediation. J. Environ. Manage. 2022, 306, 114483. https://doi.org/10.1016/j.jenvman.2022.114483
[14] Bordun, I.; Vasylinych, T.; Malovanyy, M.; Sakalova, H.; Liubchak, L.; Luchyt, L. Study of adsorption of differently charged dyes by carbon adsorbents. Desalin. Water Treat. 2023, 288, 151–158. https://doi.org/10.5004/dwt.2023.29332
[15] Santhosh, C.; Daneshvar, E.; Tripathi, K. M.; Baltrėnas, P.; Kim, T., Baltrėnaitė, E.; Bhatnagar, A. Synthesis and characterization of magnetic biochar adsorbents for the removal of Cr (VI) and Acid orange 7 dye from aqueous solution. Environ. Sci. Pollut. Res. 2020, 27, 32874–32887. https://doi.org/10.1007/s11356-020-09275-1
[16] Sivashankar, R.; Sathya, A. B.; Vasantharaj, K.; Sivasubramanian, V. Magnetic composite an environmental super adsorbent for dye sequestration–A review. Environ. Nanotechnol. Monit. Manage. 2014, 1, 36–49. https://doi.org/10.1016/j.enmm.2014.06.001
[17] Soares, S. F.; Fernandes, T.; Trindade, T.; Daniel-da-Silva, A. L. Recent advances on magnetic biosorbents and their applications for water treatment. Environ. Chem. Lett. 2020, 18, 151–164. https://doi.org/10.1007/s10311-019-00931-8
[18] Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K.; Inamuddin. Nanotechnology-based water quality management for wastewater treatment. Environ. Chem. Lett. 2019, 17, 65–121. https://doi.org/10.1007/s1031 1-018-0778-8
[19] Sousa, F. L.; Daniel-da-Silva, A. L.; Silva, N. J. O.; Trindade, T. Bionanocomposites for magnetic removal of water pollutants. In Eco-friendly polymer nanocomposites: chemistry and applications, Vol 74; Springer, 2015; pp 279–310. https://doi.org/10.1007/978-81-322-2473-0_9
[20] Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic adsorbents for the treatment of water/wastewater—a review. J. Water Process Eng. 2015, 7, 244–265. https://doi.org/10.1016/j.jwpe.2015.07.001
[21] Simeonidis, K.; Mourdikoudis, S.; Kaprara, E.; Mitrakas, M.; Polavarapu, L. Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ. Sci. Water Res. Technol. 2016, 2, 43–70. https://doi.org/10.1039/C5EW00152H
[22] Adeleye, A. S.; Conway, J. R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A. A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. https://doi. org/10.1016/j.cej.2015.10.105
[23] Reddy, D. H. K.; Yun, Y. S. Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 2016, 315, 90–111. https://doi.org/10.1016/j.ccr.2016.01.012
[24] Behrens, S.; Appel, I. Magnetic nanocomposites. Curr. Opin. Biotechnol. 2016, 39, 89–96. https://doi.org/10.1016/J.COPBI O.2016.02.005
[25] Abdullah, N. H.; Shameli, K.; Abdullah, E. C.; Abdullah, L. C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Composites, Part B 2019, 162, 538–568. https://doi. org/10.1016/j.compositesb.2018.12.075
[26] Khan, S. T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295–308. https://doi.org/10.1016/j.jhazmat.2018.09.091
[27] Siddiqui, M. T. H.; Nizamuddin, S.; Baloch, H. A.; Mubarak, N. M.; Al-Ali, M.; Mazari; S. A.; Bhutto, A. W.; Abro A.; Srinivasan, M.; Griffin, G. Fabrication of advance magnetic carbon nano-materials and their potential applications: a review. J. Environ. Chem. Eng. 2019, 7, 102812. https://doi.org/10.1016/j.jece.2018.102812
[28] Rudakov, G. A.; Tsiberkin, K. B.; Ponomarev, R. S.; Henner, V. K.; Ziolkowska, D. A.; Jasinski, J. B.; Sumanasekera, G. Magnetic properties of transition metal nanoparticles enclosed in carbon nanocages. J. Magn. Magn. Mater. 2019, 472, 34–39. https://doi.org/10.1016/j.jmmm.2018.10.016
[29] Bordun, I.; Chwastek, K.; Całus, D.; Chabecki, P.; Ivashchyshyn, F.; Kohut, Z.; Borysiuk, A.; Kulyk, Y. Comparison of structure and magnetic properties of Ni/C composites synthesized from wheat straw by different methods. Appl, Sci. 2021, 11, 10031. https://doi.org/10.3390/app112110031
[30] Meng, F.; Yang, B.; Wang, B.; Duan, S.; Chen, Z.; Ma, W. Novel dendrimer like magnetic biosorbent based on modified orange peel waste: Adsorption–reduction behavior of arsenic. ACS Sustainable Chem. Eng. 2017, 5, 9692–9700. https://doi.org/10.1021/acssuschemeng.7b01273
[31] Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016, 3, 22–39. https://doi. org/10.1016/j.impact.2016.09.004
[32] Wang, T.; Ai, S.; Zhou, Y.; Luo, Z.; Dai, C.; Yang, Y.; Zhang, J.; Huang, H.; Luo, S.; Luo, L. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468–6478. https://doi.org/10.1016/j.jece.2018.10.014
[33] Chen, L.; Zhou, C. H.; Fiore, S.; Tong, D. S.; Zhang, H.; Li, C. S.; Ji, S. F.; Yu, W. H. Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Appl. Clay Sci. 2016, 127, 143–163. https://doi.org/10.1016/j.clay.2016.04.009
[34] Baghdadi, M.; Ghaffari, E.; & Aminzadeh, B. Removal of carbamazepine from municipal wastewater effluent using optimally synthesized magnetic activated carbon: adsorption and sedimentation kinetic studies. J. Environ. Chem. Eng. 2016, 4, 3309–3321. https://doi.org/10.1016/j.jece.2016.06.034
[35] Donia, A. M.; Atia, A. A.; Abouzayed, F. I. Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem. Eng. J. 2012, 191, 22–30. https://doi.org/10.1016/j.cej.2011.08.034
[36] Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. https://doi. org/10.1016/j.jhazmat.2014.05.075
[37] Zhou, L.; Ji, L.; Ma, P. C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (II). J. Hazard. Mater. 2014, 265, 104–114. https://doi. org/10.1016/j.jhazmat.2013.11.058
[38] Masoumi, A.; Hemmati, K.; Ghaemy, M. Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres. RSC adv. 2016, 6, 49401–49410. https://doi.org/10.1039/c6ra05873f
[39] Kheshti, Z.; Hassanajili, S. Novel multifunctional mesoporous microsphere with high surface area for removal of zinc ion from aqueous solution: preparation and characterization. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1613–1626. https://doi.org/10.1007/ s10904-017-0621-x
[40] Li, R.; An, Q. D.; Mao, B. Q.; Xiao, Z. Y.; Zhai, S. R.; Shi, Z. PDA-meditated green synthesis of amino-modified, multifunctional magnetic hollow composites for Cr(VI) efficient removal. J. Taiwan Inst. Chem. Eng. 2017, 80, 596–606. https://doi.org/10.1016/j.jtice.2017.08.036
[41] Langeroudi, M. P.; Binaeian, E. Tannin-APTES modified Fe3O4 nanoparticles as a carrier of Methotrexate drug: kinetic, isotherm and thermodynamic studies. Mater. Chem. Phys. 2018, 218, 210–217. https://doi.org/10.1016/j.matchemphy s.2018.07.044
[42] Marcelo, L. R.; de Gois, J. S.; da Silva, A. A.; Cesar, D. V. Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environ. Chem. Lett. 2021, 19, 1229–1274. https://doi.org/10.1007/s10311-020-01134-2
[43] Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. https://doi.org/10.1016/j.ccr.2017.11.003
[44] Nadar, S. S.; Varadan, N.; Suresh, S.; Rao, P.; Ahirrao, D. J.; Adsare, S. Recent progress in nanostructured magnetic framework composites (MFCs): synthesis and applications. J. Taiwan Inst. Chem. Eng. 2018, 91, 653–677. https://doi.org/10.1016/j.jtice.2018.06.029
[45] Li, N.; Jiang, H. L.; Wang, X.; Wang, X.; Xu, G.; Zhang, B.; Wang, L.; Zhao, R. S.; Lin, J. M. Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC, Trends Anal. Chem. 2018, 102, 60–74. https://doi.org/10.1016/j. trac.2018.01.009
[46] Soloviy, C.; Malovanyy, M.; Bordun, I.; Ivashchyshyn, F.; Borysiuk, A.; Kulyk, Y. Structural, magnetic and adsorption characteristics of magnetically susceptible carbon sorbents based on natural raw materials. J. Water Land Dev. 2020, 47, 160–168. https://doi.org/10.24425/jwld.2020.135043
[47] Reynel–Ávila, H. E.; Camacho-Aguilar, K. I.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; González-Ponce, H. A.; Trejo-Valencia, R. Engineered magnetic carbon-based adsorbents for the removal of water priority pollutants: an overview. Adsorpt. Sci. Technol. 2021, 1–41. https://doi.org/10.1155/2021/9917444
[48] Azam, K.; Raza, R.; Shezad, N.; Shabir, M.; Yang, W.; Ahmad, N.; Shafiq, I.; Akhter, P.; Razzaq, A.; Hussain, M. Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 2020, 8, 104220. https://doi.org/10.1016/j.jece.2020.104220
[49] Astuti, W.; Sulistyaningsih, T.; Kusumastuti, E.; Thomas, G. Y. R. S.; Kusnadi, R. Y. Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour. Technol. 2019, 287, 121426. https://doi.org/10.1016/j.biortech.2019.121426
[50] Nejadshafiee, V.; Islami, M. R. Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng., C. 2019, 101, 42–52. https://doi.org/10.1016/j.msec.2019.03.081
[51] Chen, Y.; Liu, Y.; Li, Y.; Chen, Y.; Wu, Y.; Li, H.; Wang, S.; Peng, Z.; Xu, R.; Zeng, Z. Novel magnetic pomelo peel biochar for enhancing Pb (II) and Cu (II) adsorption: performance and mechanism. Water Air Soil Pollut. 2020, 231, 404. https://doi.org/10.1007/s11270-020-04788-4
[52] Bordun, I.; Szymczykiewicz, E. Synthesis and Electrochemical Properties of Fe3O4/C Nanocomposites for Symmetric Supercapacitors. Appl. Sci. 2024, 14, 677. https://doi.org/10.3390/app14020677
[53] Acosta, R.; Nabarlatz, D.; Sánchez-Sánchez, A.; Jagiello, J.; Gadonneix, P.; Celzard, A.; Fierro, V. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng. 2018, 6, 823–833. https://doi.org/10.1016/j.jece.2018.01.002
[54] Zúñiga-Muro, N. M.; Bonilla-Petriciolet, A.; Mendoza-Castillo, D. I.; Duran-Valle, C. J.; Silvestre-Albero, J.; Reynel-Avila, H. E.; Tapia-Picazo, J. C. Recycling of Tetra pak wastes via pyrolysis: Characterization of solid products and application of the resulting char in the adsorption of mercury from water. J. Cleaner Prod. 2021, 291, 125219. https://doi.org/10.1016/j.jclepro.2020.125219
[55] Singh, E.; Kumar, A.; Khapre, A.; Saikia, P.; Shukla, S. K.; Kumar, S. Efficient removal of arsenic using plastic waste char: Prevailing mechanism and sorption performance. J. Water Process Eng. 2020, 33, 101095. https://doi.org/10.1016/j.jwpe.2019.101095
[56] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Nagurskyy, A.; Stadnik, V. Integrated Regeneration Method for Used Mineral Motor Oils. Chem. Chem. Technol. 2021, 15, 239–246. https://doi.org/10.23939/chcht15.02.239
[57] Korchak, B.; Grynyshyn, O.; Chervinskyy, T.; Shapoval, P.; Nagurskyy, A. Thermooxidative Regeneration of used Mineral Motor Oils. Chem. Chem. Technol. 2020, 14, 129–134. https://doi.org/10.23939/chcht14.01.129
[58] Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application studies of activated carbon derived from rice husks produced by chemical-thermal process—A review. Adv. Colloid Interface Sci. 2011, 163, 39–52. https://doi.org/10.1016/j.cis.2011.01.006
[59] Noor, N. M.; Othman, R.; Mubarak, N. M.; Abdullah, E. C. Agricultural biomass-derived magnetic adsorbents: Preparation and application for heavy metals removal. J. Taiwan Inst. Chem. Eng. 2017, 78, 168–177. https://doi.org/10.1016/j.jtice.2017.05.023
[60] Fakkaew, K.; Koottatep, T.; Polprasert, C. Effects of hydrolysis and carbonization reactions on hydrochar production. Bioresour. Technol. 2015, 192, 328–334. https://doi.org/10.1016/j.biortech.2015.05.091
[61] Takaya, C. A.; Parmar, K. R.; Fletcher, L. A.; Ross, A. B. Biomass-derived carbonaceous adsorbents for trapping ammonia. Agriculture 2019, 9, 16. https://doi.org/10.3390/agriculture9010016
[62] Azzaz, A. A.; Khiari, B.; Jellali, S.; Ghimbeu, C. M.; Jeguirim, M. Hydrochars production, characterization and application for wastewater treatment: A review. Renewable Resour. J. 2020, 127, 109882. https://doi.org/10.1016/j.rser.2020.109882
[63] Yu, X.; Liu, S.; Lin, G.; Yang, Y.; Zhang, S.; Zhao, H.; Zheng, C.; Gao, X. KOH-activated hydrochar with engineered porosity as sustainable adsorbent for volatile organic compounds. Colloids Surf., A. 2020, 588, 124372. https://doi.org/10.1016/j.colsurfa.2019.124372
[64] Abdullah, R. F.; Rashid, U.; Ibrahim, M. L.; Hazmi, B.; Alharthi, F. A.; Nehdi, I. A. Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil. Renewable Sustainable Energy Rev. 2021, 137, 110638. https://doi.org/10.1016/j.rser.2020.110638
[65] Cai, W.; Wei, J.; Li, Z.; Liu, Y.; Zhou, J.; Han, B. Preparation of amino-functionalized magnetic biochar with excellent adsorption performance for Cr (VI) by a mild one-step hydrothermal method from peanut hull. Colloids Surf. A. 2019, 563, 102–111. https://doi.org/10.1016/j.colsurfa.2018.11.062
[66] Kazak, O.; Eker, Y. R.; Bingol, H.; Tor, A. Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis. Chem. Eng. J. 2017, 325, 564-575. https://doi.org/10.1016/j.cej.2017.05.107
[67] Guo, J.; Lua, A. C. Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon. 2000, 38, 1985–1993. https://doi.org/10.1016/S0008-6223(00)00046-4
[68] Liu, W. J.; Tian, K.; He, Y. R.; Jiang, H.; Yu, H. Q. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage. Environ. Sci. Technol. 2014, 48, 13951–13959. https://doi.org/10.1021/es504184c
[69] Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: an overlooked influence. Carbon. 2016, 99, 338–347. https://doi.org/10.1016/j.carbon.2015.12.044
[70] Theydan, S. K.; Ahmed, M. J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis. 2012, 97, 116–122. https://doi.org/10.1016/j.jaap.2012.05.008
[71] Oliveira, L. C.; Pereira, E.; Guimaraes, I. R.; Vallone, A.; Pereira, M.; Mesquita, J. P.; Sapag, K. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents. J. Hazard. Mater. 2009, 165, 87–94. https://doi.org/10.1016/j.jhazmat.2008.09.064
[72] Nistor, M. A.; Muntean, S. G.; Ianoș, R.; Racoviceanu, R.; Ianași, C.; Cseh, L. Adsorption of anionic dyes from wastewater onto magnetic nanocomposite powders synthesized by combustion method. Appl. Sci. 2021, 11, 9236. https://doi.org/10.3390/app11199236
[73] Ianoş, R.; Păcurariu, C.; Muntean, S. G.; Muntean, E.; Nistor, M. A.; Nižňanský, D. Combustion synthesis of iron oxide/carbon nanocomposites, efficient adsorbents for anionic and cationic dyes removal from wastewaters. J. Alloys Compd. 2018, 741, 1235–1246. https://doi.org/10.1016/j.jallcom.2018.01.240
[74] Li, Y.; Zimmerman, A. R.; He, F.; Chen, J.; Han, L.; Chen, H.; Han, L.; Chen, H.; Hu, X.; Gao, B. Solvent-free synthesis of magnetic biochar and activated carbon through ball-mill extrusion with Fe3O4 nanoparticles for enhancing adsorption of methylene blue. Sci. Total Environ. 2020, 722, 137972. https://doi.org/10.1016/j.scitotenv.2020.137972
[75] Tang, S. C.; Lo, I. M. Magnetic nanoparticles: essential factors for sustainable environmental applications. Water Res. 2013, 47, 2613–2632. https://doi.org/10.1016/j.watres.2013.02.039
[76] Zhang, X.; Lv, L.; Qin, Y.; Xu, M.; Jia, X.; Chen, Z. Removal of aqueous Cr (VI) by a magnetic biochar derived from Melia azedarach wood. Bioresour. Technol. 2018, 256, 1–10. https://doi.org/10.1016/j.biortech.2018.01.145
[77] Dong, C. D.; Chen, C. W.; Hung, C. M. Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments. Bioresour. Technol. 2017, 245, 188–195. https://doi.org/10.1016/j.biortech.2017.08.204
[78] Li, C.; Wang, X.; Meng, D.; Zhou, L. Facile synthesis of low-cost magnetic biosorbent from peach gum polysaccharide for selective and efficient removal of cationic dyes. Int. J. Biol. Macromol. 2018, 107, 1871–1878. https://doi.org/10.1016/j.ijbiomac.2017.10.058
[79] Cazetta, A. L.; Pezoti, O.; Bedin, K. C.; Silva, T. L.; Paesano Junior, A.; Asefa, T.; Almeida, V. C. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustainable Chem. Eng. 2016, 4, 1058–1068. https://doi.org/10.1021/acssuschemeng.5b01141
[80] Adeogun, A. I.; Akande, J. A.; Idowu, M. A.; Kareem, S. O. Magnetic tuned sorghum husk biosorbent for effective removal of cationic dyes from aqueous solution: isotherm, kinetics, thermodynamics and optimization studies. Appl. Water Sci. 2019, 9, 160. https://doi.org/10.1007/s13201-019-1037-2
[81] Vahdati-Khajeh, S.; Zirak, M.; Tejrag, R. Z.; Fathi, A.; Lamei, K.; Eftekhari-Sis, B. Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution. Surf. Interfaces. 2019, 15, 157–165. https://doi.org/10.1016/j.surfin.2019.03.003
[82] Salem, S.; Teimouri, Z.; Salem, A. Fabrication of magnetic activated carbon by carbothermal functionalization of agriculture waste via microwave-assisted technique for cationic dye adsorption. Adv. Powder Technol. 2020, 31, 4301–4309. https://doi.org/10.1016/j.apt.2020.09.007
[83] Jiang, W.; Zhang, L.; Guo, X.; Yang, M.; Lu, Y.; Wang, Y.; Zheng, Y.; Wei, G. Adsorption of cationic dye from water using an iron oxide/activated carbon magnetic composites prepared from sugarcane bagasse by microwave method. Environ. Technol. 2019, 42, 337–350. https://doi.org/10.1080/09593330.2019.1627425
[84] Vieira, L. H. S.; Sabino, C. M. S.; Júnior, F. H. S.; Rocha, J. S.; Castro, M. O.; Alencar, R. S.; da Costa, l. S.; Viana, B. C.; de Paula, A. J.; Ferreira, O. P. et al. Strategic design of magnetic carbonaceous nanocomposites and its application as multifunctional adsorbent. Carbon 2020, 161, 758–771. https://doi.org/10.1016/j.carbon.2020.01.089
[85] Eltaweil, A. S.; Mohamed, H. A.; Abd El-Monaem, E. M.; El-Subruiti, G. M. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. Adv. Powder Technol. 2020, 31, 1253–1263. https://doi.org/10.1016/j.apt.2020.01.005
[86] Oladipo, A. A.; Ifebajo, A. O. Highly efficient magnetic chicken bone biochar for removal of tetracycline and fluorescent dye from wastewater: two-stage adsorber analysis. J. Environ. Manage. 2018, 209, 9–16. https://doi.org/10.1016/j.jenvman.2017.12.030
[87] Geng, J.; Chang, J. Synthesis of magnetic Forsythia suspensa leaf powders for removal of metal ions and dyes from wastewater. J. Environ. Chem. Eng. 2020, 8, 104224. https://doi.org/10.1016/j.jece.2020.104224
[88] Li, Y.; Zhang, X.; Zhang, P.; Liu, X.; Han, L. Facile fabrication of magnetic bio-derived chars by co-mixing with Fe3O4 nanoparticles for effective Pb2+ adsorption: properties and mechanism. J. Cleaner Prod. 2020, 262, 121350. https://doi.org/10.1016/j.jclepro.2020.121350
[89] Pan, J.; Gao, B.; Wang, S.; Guo, K.; Xu, X.; Yue, Q. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals. Sci. Total Environ. 2020, 737, 140283. https://doi.org/10.1016/j.scitotenv.2020.140283
[90] Maneechakr, P.; Mongkollertlop, S. Investigation on adsorption behaviors of heavy metal ions (Cd2+, Cr3+, Hg2+ and Pb2+) through low-cost/active manganese dioxide-modified magnetic biochar derived from palm kernel cake residue. J. Environ. Chem. Eng. 2020, 8, 104467. https://doi.org/10.1016/j.jece.2020.104467
[91] Hou, T.; Yan, L.; Li, J.; Yang, Y.; Shan, L.; Meng, X.; Li, X.; Zhao, Y. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent. Chem. Eng. J. 2020, 384, 123331. https://doi.org/10.1016/j.cej.2019.123331
[92] Oladipo, A. A.; Ahaka, E. O.; Gazi, M. High adsorptive potential of calcined magnetic biochar derived from banana peels for Cu2+, Hg2+, and Zn2+ ions removal in single and ternary systems. Environ. Sci. Pollut. Res. 2019, 26, 31887–31899. https://doi.org/10.1007/s11356-019-06321-5
[93] Altaf, A. R.; Teng, H.; Zheng, M.; Ashraf, I.; Arsalan, M.; Rehman, A. U.; Gang, l.; Pengjie, W.; Yongqiang, R.; Xiaoyu, L. One-step synthesis of renewable magnetic tea-biochar derived from waste tea leaves for the removal of Hg0 from coal-syngas. J. Environ. Chem. Eng. 2021, 9, 105313. https://doi.org/10.1016/j.jece.2021.105313
[94] Wang, H.; Liu, Y.; Ifthikar, J.; Shi, L.; Khan, A.; Chen, Z.; Chen, Z. Towards a better understanding on mercury adsorption by magnetic bio-adsorbents with γ-Fe2O3 from pinewood sawdust derived hydrochar: Influence of atmosphere in heat treatment. Bioresour. Technol. 2018, 256, 269–276. https://doi.org/10.1016/j.biortech.2018.02.019
[95] Demarchi, C. A.; Michel, B. S.; Nedelko, N.; Ślawska-Waniewska, A.; Dłużewski, P.; Kaleta, A.; Minikayev, R.; Strachowski, T.; Lipińska, L.; Dal Magro, J.; et al. Preparation, characterization, and application of magnetic activated carbon from termite feces for the adsorption of Cr (VI) from aqueous solutions. Powder Technol. 2019, 354, 432–441. https://doi.org/10.1016/j.powtec.2019.06.020
[96] Qiao, K.; Tian, W.; Bai, J.; Zhao, J.; Du, Z.; Song, T.; Chu, M.; Wang, L.; Xie, W. Synthesis of floatable magnetic iron/biochar beads for the removal of chromium from aqueous solutions. Environ. Technol. Innovation. 2020, 19, 100907. https://doi.org/10.1016/j.eti.2020.100907
[97] Aguayo-Villarreal, I. A.; Cortes-Arriagada, D.; Rojas-Mayorga, C. K.; Pineda-Urbina, K.; Muñiz-Valencia, R.; Gonzalez, J. Importance of the interaction adsorbent–adsorbate in the dyes adsorption process and DFT modeling. J. Mol. Struct. 2020, 1203, 127398. https://doi.org/10.1016/j.molstruc.2019.127398
[98] Ali, I.; Peng, C.; Khan, Z. M.; Sultan, M.; Naz, I. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution. Arabian J. Sci. Eng. 2018, 43, 6245–6259. https://doi.org/10.1007/s13369-018-3441-6
[99] El-Gamal, S. M. A.; Amin, M. S.; Ahmed, M. A. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles. J. Environ. Chem. Eng. 2015, 3, 1702–1712. https://doi.org/10.1016/j.jece.2015.06.022
[100] Mtshatsheni, K. N. G.; Ofomaja, A. E.; Naidoo, E. B. Synthesis and optimization of reaction variables in the preparation of pinemagnetite composite for removal of methylene blue dye. S. Afr. J. Chem. Eng. 2019, 29, 33–41. https://doi.org/10.1016/j.sajce.2019.05.002
[101] Nguyen, V. H.; Van, H. T.; Nguyen, V. Q.; Dam, X. V.; Hoang, L. P.; Ha, L. T. Magnetic Fe3O4 nanoparticle biochar derived from pomelo peel for reactive Red 21 adsorption from aqueous solution. J. Chem. 2020, 3080612. https://doi.org/10.1155/2020/3080612
[102] Akpomie, K. G.; Conradie, J. Efficient synthesis of magnetic nanoparticle-Musa acuminata peel composite for the adsorption of anionic dye. Arabian J. Chem. 2020, 13, 7115–7131. https://doi.org/10.1016/j.arabjc.2020.07.017
[103] Olusegun, S. J.; Freitas, E. T.; Lara, L. R.; Mohallem, N. D. Synergistic effect of a spinel ferrite on the adsorption capacity of nano bio-silica for the removal of methylene blue. Environ. Technol. 2021, 42, 2163–2176. https://doi.org/10.1080/09593330.2019.1694083
[104] Altıntıg, E.; Altundag, H.; Tuzen, M.; Sarı, A. Effective removal of methylene blue from aqueous solutions using magnetic loaded activated carbon as novel adsorbent. Chem. Eng. Res. Des. 2017, 122, 151–163. https://doi.org/10.1016/j.cherd.2017.03.035
[105] Zuhara, S.; Pradhan, S.; Zakaria, Y.; Shetty, A. R.; McKay, G. Removal of methylene blue from water using magnetic GTL-derived biosolids: Study of adsorption isotherms and kinetic models. Molecules 2023, 28, 1511. https://doi.org/10.3390/molecules28031511
[106] Jia, Z.; Wu, L.; Zhang, D.; Han, C.; Li, M.; Wei, R. Adsorption behaviors of magnetic carbon derived from wood tar waste for removal of methylene blue dye. Diamond Relat. Mater. 2022, 130, 109408. https://doi.org/10.1016/j.diamond.2022.109408.
[107] Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by zeolite and montmorillonite: template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371–380. https://doi.org/10.1016/j.jhazm at.2015.09.007
[108] Xu, P.; Zeng, G. M.; Huang, D. L.; Feng, C. L.; Hu, S.; Zhao, M. H.; Lai, C.; Wei Z.; Huang, C.; Xie, G. X. et al. Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 2012, 424, 1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023
[109] Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y. S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem. Eng. J. 2019, 366, 608–621. https://doi.org/10.1016/j.cej.2019.02.119
[110] Jafari Kang, A.; Baghdadi, M.; Pardakhti, A. Removal of cadmium and lead from aqueous solutions by magnetic acid-treated activated carbon nanocomposite. Desalin. Water Treat. 2016, 57, 18782–18798. https://doi.org/10.1080/19443994.2015.1095123
[111] Huong, P. T. L.; Lan, H.; An, T. T.; Van Quy, N.; Tuan, P. A.; Alonso, J.; Phan, M. H.; Le, A. T. Magnetic iron oxide-carbon nanocomposites: Impacts of carbon coating on the As (V) adsorption and inductive heating responses. J. Alloys Compd. 2018, 739, 139–148. https://doi.org/10.1016/j.jallcom.2017.12.178
[112] Chen, M.; Shao, L. L.; Li, J. J.; Pei, W. J.; Chen, M. K.; Xie, X. H. One-step hydrothermal synthesis of hydrophilic Fe3O4/carbon composites and their application in removing toxic chemicals. RSC Adv. 2016, 6, 35228–35238. https://doi. org/10.1039/c6ra01408a
[113] Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G. Pb (II) removal of Fe3O4@ SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 2013, 215, 461–471. https://doi. org/10.1016/j.cej.2012.11.043
[114] Ren, Y.; Abbood, H. A.; He, F.; Peng, H; Huang, K. Magnetic EDTA-modified chitosan/SiO2/ Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311. https://doi.org/10.1016/j.cej.2013.04.059
[115] Gutha, Y; Munagapati, V. S. Removal of Pb (II) ions by using magnetic chitosan-4-((pyridin-2-ylimino) methyl) benzaldehyde Schiff’s base. Int. J. Biol. Macromol. 2016, 93, 408–417. https://doi. org/10.1016/j.ijbiomac.2016.08.084
[116] Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb (II), Hg (II) and Cu (II) in water treatment: adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. https://doi.org/10.1016/j. cej.2015.06.043
[117] Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr (VI). Appl. Surf. Sci. 2016, 384, 1–9. https://doi. org/10.1016/j.apsusc.2016.05.022
[118] Hosseinzadeh, H.; Ramin, S. Effective removal of copper from aqueous solutions by modified magnetic chitosan/graphene oxide nanocomposites. Int. J. Biol. Macromol. 2018, 113, 859–868. https://doi.org/10.1016/j.ijbiomac.2018.03.028
[119] Pipíška, M.; Zarodňanská, S.; Horník, M.; Ďuriška, L.; Holub, M.; Šafařík, I. Magnetically functionalized moss biomass as biosorbent for efficient Co2+ ions and thioflavin T removal. Materials 2020, 13, 3619. https://doi.org/10.3390/ma13163619