[3+2] Циклоприєднання n-трет-бутил,α-(4-трифлуорометил)-фенілнітрону з метакролеїном: теоретичне дослідження
Attachment | Size |
---|---|
full_text.pdf | 1.64 MB |
Keywords:
[1] Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; Wiley-Interscience: New York, 1984.
[2] Gothelf, K.V., Jorgensen, K.A.Asymmetric 1,3-Dipolar Cyc-loaddition Reactions. Chem. Rev. 1998, 98, 863-910. http://doi.org/10.1021/cr970324e
[3] Jasiński, R.A New Insight on the Molecular Mechanism of the Reaction between (Z)-C,N-Diphenylnitrone and 1,2-Bismethylene-3,3,4,4,5,5-hexamethylcyclopentane.J. Mol. Graph. Model. 2020, 94, 107461. http://doi.org/10.1016/j.jmgm.2019.107461
[4] Jasiński, R.Competition between One-Step and Two-Step Me-chanism in Polar [3 + 2] Cycloadditions of (Z)-C-(3,4,5-Trimethoxyphenyl)-N-methyl-nitrone with (Z)-2-EWG-1-Bromo-1-nitroethenes.Comput. Theor. Chem. 2018, 1125, 77-85. https://doi.org/10.1016/j.comptc.2018.01.009
[5] Jasiński, R.Nitroacetylene as Dipolarophile in [2 + 3] Cycloaddition Reactions with Allenyl-Type Three-Atom Components: DFT Computational Study. Monatsh. Chem. 2015, 146, 591-599. https://doi.org/10.1007/s00706-014-1389-0
[6] Jasiński, R.; Jasińska, E.; Dresler, E. A DFT Computational Study of the Molecular Mechanism of [3 + 2] Cycloaddition Reac-tions between Nitroethene and Benzonitrile N-Oxides. J. Mol. Model. 2017, 23, 13. https://doi.org/10.1007/s00894-016-3185-8
[7] Jasiński, R.Competition between the One-Step and Two-Step, Zwitterionic Mechanisms in the [2+3] Cycloaddition of Gem-Dinitroethene with (Z)-C,N-Diphenylnitrone: A DFT Computation-al Study.Tetrahedron2013, 69, 927-932.https://doi.org/10.1016/j.tet.2012.10.095
[8] Padwa, A. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products; Wiley and Sons: Hoboken, 2003.
[9] Merino, P. In Science of Synthesis, Vol. 27; Padwa, A., Ed.; George Thieme: New York, 2004.
[10] Jones, G.O.; Houk, K.N.Predictions of Substituent Effects in Thermal Azide 1,3-Dipolar Cycloadditions: Implications for Dy-namic Combinatorial (Reversible) and Click (Irreversible) Chemi-stry. J. Org. Chem. 2008, 73, 1333-1342. https://doi.org/10.1021/jo702295d
[11] Parr, R.G.; Pearson R.G.Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005
[12] Minter, A.R.;, Brennan, B.B.; Mapp, A.K. A Small Molecule Transcriptional Activation Domain. J. Am. Chem. Soc. 2004, 126, 10504-10505.https://doi.org/10.1021/ja0473889
[13] Chiacchio, U.; Rescifina, A.; Iannazzo, D.;Piperno, A.; Romeo, R.; Borrello, L.; Sciortino, M.T.; Balestrieri, E.; Macchi, B.; Mastino, A. et al.Phosphonated Carbocyclic 2‘-Oxa-3‘-azanucleosides as New Antiretroviral Agents. J. Med. Chem. 2007, 50, 3747-3750. https://doi.org/10.1021/jm070285r
[14] Ding, P.; Miller, M.; Chen, Y.;Helquist, P.; Oliver, A.J.; Wiest, O.Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Org. Lett. 2004, 6, 1805-1808.https://doi.org/10.1021/ol049473r
[15] Wess, G., Kramer, W., Schuber, G.;Enhsen, A.; Baringhaus, K.-H.; Glombik, H.; Müllner, S.; Bock, K.; Kleine, H.; John, M. et al. Synthesis of Bile Acid – Drug Conjugates: Potential Drug – Shuttles for Liver Specific Targeting. Tetrahedron. Lett. 1993, 34, 819-822. https://doi.org/10.1016/0040-4039(93)89021-H
[16] Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiac-chio, U.; Saita, M.G.; Iannazzo, D.; Piperno, A.; Romeo, G. An Efficient Approach to Enantiomeric Isoxazolidinyl Analogues of Tiazofurin Based on Nitrone Cycloadditions.Tetrahedron Asymme-try2005, 16, 3865-3876. https://doi.org/10.1016/j.tetasy.2005.11.004
[17] Mannucci, V.; Cordero, F.M.; Piperno, A.;Romeo, G.; Brandi, A. Diastereoselective Synthesis of a Collection of New Homonuc-leoside Mimetics Containing Pyrrolo[1,2-b]isoxazoline and Pyrroli-dine Rings. Tetrahedron Asymmetry2008, 19, 1204-1209. https://doi.org/10.1016/j.tetasy.2008.04.028
[18] Romeo, R.; Giofre, S.V.; Macchi, B.;Balestrieri, E.; Mastino, A.; Merino, P.; Carnovale, C.; Romeo, G.; Chiacchio, U. Truncated Reverse Isoxazolidinyl Nucleosides: A New Class of Allosteric HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem. 2012, 7, 565-569. https://doi.org/10.1002/cmdc.201200022
[19] Kiguchi, T.; Shirakawa, M.; Honda, R.;Ninomiya, I.; Naito, T. Total Synthesis of (+)-Azimic Acid, (+)-Julifloridine, and Proposed Structure of N-Methyljulifloridine via Cycloaddition of Nitrone to a Chiral Dipolarophile. Tetrahedron1998, 54, 15589-15606. https://doi.org/10.1016/S0040-4020(98)01012-6
[20] Cardona, F.; Moreno, G.; Guarna, F.;Vogel, P.; Schuetz, C.; Merino, P.; Goti, A. New Concise Total Synthesis of (+)-Lentiginosine and Some Structural Analogues. J. Org. Chem.2005, 70, 6552-6555. https://doi.org/10.1021/jo0509408
[21] Delso, I.; Tejero, T.; Goti, A.; Merino, P. Synthesis of d-Arabinose-Derived Polyhydroxylated Pyrrolidine, Indolizidine and Pyrrolizidine Alkaloids. Total Synthesis of Hyacinthacine A2. Tetrahedron2010, 66, 1220-1227. https://doi.org/10.1016/j.tet.2009.12.030
[22] Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Palladium-Catalyzed Sequential One-Pot Reaction of Aryl Bromides with O-Homoallylhydroxylamines: Synthesis of N-Aryl-β-amino Alcohols. Org. Biomol. Chem. 2007, 5, 1391-1396. https://doi.org/10.1039/B701509G
[23] Andrade, M.; Barros, M.T.; Pinto, R.C. Clean and Sustainable Methodologies for the Synthesis of Isoxazolidines. In Heterocyclic-Targets in Advanced Organic Synthesis; Carreiras, M. C.; Marco-Contelles, J., Eds.; Research Signpost: Trivandrum, India, 2011; pp 51-67.
[24] Bădoiu, A.; Kündig, E.P.Electronic Effects in 1,3-Dipolar Cycloaddition Reactions of N-Alkyl and N-Benzyl Nitrones with Dipolarophiles. Org. Biomol. Chem. 2012,10, 114-121. https://doi.org/10.1039/C1OB06144E
[25] Frisch, M.J., Trucks, G.W., Schlegel, H.B. Gaussian 09, Revision D.01, CT 2009.
[26] Jasiński, R.; Koifman, O.I.; Barański, A. A DFT Study on the Regioselectivity and Molecular Mechanism of Nitroethene [2 + 3] Cycloaddition to (Z)-C,N-Diphenylnitrone and C,C,N-Triphenylnitrone. Mendeleev Commun.2011, 21, 262-263. https://doi.org/10.1016/j.mencom.2011.09.010
[27] Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A DFT Study of the Ionic [2+2] Cycloaddition Reactions of Keteniminium Cations with Terminal Acetylenes. Tetrahedron2015, 71, 2421-2427.https://doi.org/10.1016/j.tet.2015.02.070
[28] Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297-306. https://doi.org/10.1021/ct700248k
[29] Cances, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Back-ground and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032.https://doi.org/10.1063/1.474659
[30] Cossi, M.; Barone, V.; Cammi, R.;Tomasi, J. Ab Initio Study of Solvated Molecules: A New Implementation of the Polarizable Continuum Model. Chem. Phys. Lett. 1996, 255, 327-335. https://doi.org/10.1016/0009-2614(96)00349-1
[31] Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404-417.https://doi.org/10.1002/(SICI)1096-987X(199803)19:4<404::AID-JCC3>3.0.CO;2-W
[32] Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415-32428.https://doi.org/10.1039/C4RA04280H
[33] Mayer, I. Bond Orders and Valences from ab Initio Wave Functions. Int. J. Quantum. Chem. 1986, 29, 477-483. https://doi.org/10.1002/qua.560290320
[34] Keresztury, G.; Holly, S.; Besenyei, G.; Varga, J.; Wang, A.; Durig, J.R. Vibrational Spectra of Monothiocarbamates-II. IR and Raman Spectra, Vibrational Assignment, Conformational Analysis and AB Initio Calculations of S-Methyl-N,N-dimethylthiocarbamate. Spectrochimica Acta Part A: Molecular Spectroscopy. 1993, 49, 2007-2017, 2019-2026. https://doi.org/10.1016/S0584-8539(09)91012-1
[35] Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interac-tions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899-926. https://doi.org/10.1021/cr00088a005
[36] Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735. https://doi.org/10.1063/1.449486
[37] Zhao, Y.; Truhlar, D.G. Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. J. Phys. Chem. 2004, 108, 6908-6918.https://doi.org/10.1021/jp048147q
[38] Fukui, K. Formulation of the Reaction Coordinate. J. Phys. Chem. 1970, 74, 4161-4163. https://doi.org/10.1021/j100717a029
[39] Parr, R.G.; von Szentpaly, L.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922-1924.https://doi.org/10.1021/ja983494x
[40] Parr, R.G.; Yang, W. In Density Functional Theory of Atoms and Molecules; Oxford University: New York, 1989.
[41] Domingo, L.R.; Chamorro, E.; Pérez, P. Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reac-tions. A Theoretical Study. J. Org. Chem. 2008, 73, 4615-4624.https://doi.org/10.1021/jo800572a
[42] Yang, W.; Mortier, W.J. The Use of Global and Local Molecular Parameters for the Analysis of the Gas-Phase Basicity of Amines. J. Am. Chem. Soc. 1986, 108, 5708-5711. https://doi.org/10.1021/ja00279a008
[43] Domingo, L.R.; Aurell, M.J.; Pérez, P.;Contreras, R. Quantita-tive Characterization of the Local Electrophilicity of Organic Mole-cules. Understanding the Regioselectivity on Diels−Alder Reac-tions. J. Phys. Chem. 2002, 106, 6871-6875. https://doi.org/10.1021/jp020715j
[44] Pérez, P.; Domingo, L.R.; Duque-Norna, M.;Chamorro, E. A Condensed-to-Atom Nucleophilicity Index. An Application to the Director Effects on the Electrophilic Aromatic Substitutions.J. Mol. Struct. Theochem. 2009, 895, 86-91. https://doi.org/10.1016/j.theochem.2008.10.014
[45]Mloston, G.; Jasinski, R.; Kula, K.;Heimgartner, H. A DFT Study on the Barton–Kellogg Reaction – The Molecular Mechanism of the Formation of Thiiranes in the Reaction between Diphenyldia-zomethane and Diaryl Thioketones. Eur. J. Org. Chem. 2020, 2020, 176-182.https://doi.org/10.1002/ejoc.201901443
[46] Sustmann, R.; Shubert, R. Photoelektronenspektroskopische bestimmung von substituenten-effekten II. α,β-ungesättigte Carbonester. Tetrahedron Lett.1972, 13, 4271-4274. https://doi.org/10.1016/S0040-4039(01)94292-3
[47] Šponer, J. Hobza, P. DNA Base Amino Groups and their Role in Molecular Interactions: Ab Initio and Preliminary Density Functional Theory Calculations. Int. J. Quantum. Chem. 1996, 57, 959-970.https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<959::AID-QUA16>3.0.CO;2-S
[48] Murray, J.S.; Sen, K. Molecular electrostatic potentials: concepts and 399 applications; Elsevier: Amsterdam, 1996.
[49] Marakchi, K.; Kabbaj, O. K.; Komiha, N. Etude DFT du méca-nisme des réactions de cycloaddition dipolaire-1,3 de la C,N-diphénylnitrone avec des dipolarophiles fluorés de type éthylénique et acétylénique. J. Fluor. Chem. 2002, 114, 81-89. https://doi.org/10.1016/S0022-1139(01)00570-X
[50] Marakchi, K.; Abou El Makarim, H.; Kabbaj, O. K.;Komiha, N. Etude Theorique du Mecanisme de la Reaction de Cycloaddition Dipolaire-1,3 du 3-Fluoro-3-Trifluoromethyl Prop-2-Enoate de Methyle Avec la Pyrroline-1-Oxyde. Phys. Chem. News. 2010,52, 128-136.
[51] Marakchi, K.; Ghailane, R.; Kabbaj, O.K.; Komiha, N. DFT Study of the Mechanism and Stereoselectivity of the 1,3-Dipolar Cycloaddition between Pyrroline-1-oxide and Methyl Crotonate. J. Chem. Sci. 2014, 126, 283-292. https://doi.org/10.1007/s12039-013-0563-y
[52] Domingo, L.R. Theoretical Study of the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides. A DFT Study of Reaction
between Trifluoromethyl Thiomethyl Azomethine Ylide and Acronitrile. J. Org. Chem. 1999, 64, 3922-3929. https://doi.org/10.1021/jo9822683