Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Турбідиметричне визначення мебеверину гідрохлориду у фармацевтичних препаратах з використанням двох послідовних зон виявлення в умовах неперервного потоку

Nagham S. Turkey1, Jalal N. Jeber1
Affiliation: 
1 University of Baghdad, College of Science, Department of Chemistry, Al-Jadriya, Baghdad, Iraq jalal.n@sc.uobaghdad.edu.iq
DOI: 
https://doi.org/10.23939/chcht16.04.600
AttachmentSize
PDF icon full_text.pdf1.01 MB
Abstract: 
Для визначення мебеверину гідрохлориду (МБГ) у фармацевтичних препаратах було розроблено і валідовано простий, недорогий і швидкий турбідиметричний метод впорскування. Розроблений метод ґрунтується на утворенні білого каламутного продукту у формі іонної пари в результаті реакції між МБГ і персульфатом натрію в замкнутій системі впорскування, у якій персульфат натрію використовують як осаджувач. Мутність утвореного комплексу вимірювали під кутом детектування 180° (ослаблене детектування) за допомогою детектора NAG dual&Solo (0-180°), який має подвійні зони детектування (тобто вимірювальні комірки 1 і 2). Збільшення мутності комплексу було прямо пропорційне збільшенню концентрації МБГ в діапазоні 2,0-10 мкмоль/л з межею виявлення 0,35 мкмоль/л, 0,9981 (R2), та 2,0-12 мкмоль/л з межею виявлення 0,4 мкмоль/л і 0,9973 (R2) для вимірювальних комірок 1 і 2, відповідно. Внутрішньодобова точність для трьох серійних оцінок 5,0 і 9,0 мкмоль/л МБГ показала RSD % на рівні 0,23 % і 0,77 % та 0,68 % і 0,13 % для комірок 1 і 2, відповідно, у той час як міжденна точність для трьох серій за три дні продемонструвала RSD % на рівні 0,03 % і 0,77 % та 0,11 % і 0,07 % для вимірювальних комірок 1 і 2, відповідно. Точність розробленого методу була виражена як % похибки (E%) і Rec % (відсоток відновлення), який становив від 100,35 до 101,15 та від 99,70 до 101,56 для комірки 1 і комірки 2, відповідно. Даний метод впорскування не показав ефекту інтерференції звичайних допоміжних речовин і дозволяє кількісно визначати 60 зразків на годину. Розроблений метод був успішно застосований для кількісного визначення МБГ в різних таблетках, що містять 135 мг, з відмінним відсотком відновлення.
References: 

[1] Othman, A.A.; El-Bagary, R. Development and Validation of Spectrophotometric Methods for the Simultaneous Determination of Mebeverine Hydrochloride and Chlordiazepoxide in Bulk and in Dosage Form. Pharm. Anal. Acta 2016, 13, 1000501. https://doi.org/10.4172/2153-2435.1000501
[2] Pharmacopoeia, B. British pharmacopoeia, 2016. (Book Online)
[3] Commission, B.P., G.B.M. Commission, and G.M. Council, British Pharmacopoeia 2000. Vol. 1. 2000: Bernan Press (PA).
[4] Abd Elhady, Seham S.; Mortada, Naheed D.; Awad, Gehanne A.S.; Zaki, Noha M. Development of in Situ Gelling and Muco Adhesive Mebeverine Hydrochloride Solution for Rectal Administration. Saudi Pharm. J. 2003, 11, 159-171.
[5] Hosny, E.A.; Abdel-Hady, S.S.; El-Tahir, K.E.H. Formulation, in-vitro Release and ex-vivo Spasmolytic Effects of Mebeverine Hydrochloride Suppositories Containing Polycarbophil or Polysorbate 80. Int. J. Pharm. 1996, 142, 163-168. https://doi.org/10.1016/0378-5173(96)04664-9
[6] Krishnaiah, Y.S.R.; Satyanarayana, S. Colon-Specific Drug Delivery Systems. In Advances in Controlled and Novel Drug Delivery; CBS Publishers and Distributors: New Delhi, India, 2001; pp 89-119.
[7] Elzanfaly, E.S.; Hegazy, M.A.; Samah S. Saad, S.S.; Salem, M.Y.; Abd El Fattah, L.E. Validated Green High-Performance Liquid Chromatographic Methods for the Determination of Coformulated Pharmaceuticals: A Comparison with Reported Conventional Methods. J. Sep. Sci. 2015, 38, 757-763. https://doi.org/10.1002/jssc.201401151
[8] Radwan, M.A.; Abdine, H.H.; Aboul-Enein, H.Y. A Validated Chiral HPLC Method for the Determination of Mebeverine HCl Enantiomers in Pharmaceutical Dosage forms and Spiked rat Plasma. Biomed. Chromatogr. 2006, 20, 211-216. https://doi.org/10.1002/bmc.556
[9] Hatami, M.; Farhadi, K.; Tukmechi, A. Fiber-Based Liquid-Phase Micro-Extraction of Mebeverine Enantiomers Followed by Chiral High-Performance Liquid Chromatography Analysis and Its Application to Pharmacokinetics Study in Rat Plasma. Chirality 2012, 24, 634-639. https://doi.org/10.1002/chir.22057
[10] Elmasry, M.S.; Blagbrough, I.S.; Rowan, M.G.; Saleh, H.M.; Kheir, A.A.; Rogers, P.J. Quantitative HPLC Analysis of Mebeverine, Mesalazine, Sulphasalazine and Dispersible Aspirin Stored in a Venalink Monitored Dosage System with Co-Prescribed Medicines. J. Pharm. Biomed. Anal. 2011, 54, 646-652. https://doi.org/10.1016/j.jpba.2010.10.002
[11] Heneedak, H.M.; Salama, I.; Mostafa, S.; El-Sadek, M. A Stability-indicating HPLC Method for the Simultaneous Determination of Mebeverine Hydrochloride and Chlordiazepoxide in Commercial Tablets. Curr. Anal. Chem. 2014, 10, 565-573. https://doi.org/10.2174/15734110113099990040
[12] Lotfy, H.M.; Fayez, Y.M.; Michael, A.M.; Nessim, C.K. Simultaneous Determination of Mebeverine Hydrochloride and Chlordiazepoxide in Their Binary Mixture Using Novel Univariate Spectrophotometric Methods via Different Manipulation Pathways. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 155, 11-20. https://doi.org/10.1016/j.saa.2015.10.033
[13] Mahdi, A.; Abas, Z. Spectrophotometric Determination of Mebeverine Hydrochloride In Pharmaceutical Preparation via Ion Association Reaction. J. Phys. Conf. Ser. 2018, 1032, 012064. https://doi.org/10.1088/1742-6596/1032/1/012064
[14] Nezhadali, A.; Bonakdar G.A. Multivariate optimization of Mebeverine Analysis Using Molecularly Imprinted Polymer Electrochemical Sensor Based on Silver Nanoparticles. J. Food Drug Anal. 2019, 27, 305-314. https://doi.org/10.1016/j.jfda.2018.05.002
[15] Salama, N.N.; Zaazaa, H.E.; Azab, S.M.; Atty, S.A.; Naglaa M. El-Kosy, N.M.; Salem, M.Y. Utility of Gold Nanoparticles/Silica Modified Electrode for Rapid Selective Determination of Mebeverine in Micellar Medium: Comparative Discussion and Application in Human Serum. Ionics (Kiel) 2016, 22, 957-966. https://doi.org/10.1007/s11581-015-1602-0
[16] Ibrahim, H.; Issa, Y.M.; Abu-Shawish, H.M. Potentiometric Flow Injection Analysis of Mebeverine Hydrochloride in Serum and Urine. J. Pharm. Biomed. Anal. 2005, 36, 1053-1061. https://doi.org/10.1016/j.jpba.2004.08.032
[17] Lakshmi, M.V.; Pavani, M.; Rao, G.D. Rp – Hplc Method for Determination of Mebeverine Hydrochloride in Dosage Forms Employing Ms Compatible Buff Ers. Indian Drugs 2020, 57, 69-72 https://doi.org/10.53879/id.57.03.11722
[18] Senthil Kumar, K.R.; Meyyanathan, S.N.; Gowramma, B. Chiral Rp-HPLC Method for Enantiomeric Separation of Mebeverine Hydrochloride in Formulations. Indo Am. J. Pharm. Sci. 2015, 5, 2756-2764
[19] Chhalotiya, U.K.; Patel, N.M.; Shah, D.A.; Mehta, F.A.; Bhatt, K.K. Thin-Layer Chromatography Method for the Simultaneous Quantification and Stability Testing of Alprazolam and Mebeverine in Their Combined Pharmaceutical Dosage Form. J. Taibah Univ. Medical Sci. 2017, 11, 66-75. https://doi.org/10.1016/j.jtusci.2015.06.012
[20] El-Desoky, H.S.; Ghoneim, M.M.; El-Badawy, F.M. Carbon Nanotubes Modified Electrode for Enhanced Voltammetric Sensing of Mebeverine Hydrochloride in Formulations and Human Serum Samples. J. Electrochem. Soc. 2017, 164, B212-B222. https://doi.org/10.1149/2.0941706jes
[21] Walash, M.I.; Mohie M Kh Sharaf El-din; Nahed M. El-Enany; Manal I. Eid; Shereen M. Shalan. Simultaneous Determination of Sulpiride and Mebeverine by HPLC Method Using Fluorescence Detection: Application to Real Human Plasma. Chem. Cent. J. 2012, 6, 13. https://doi.org/10.1186/1752-153X-6-13
[22] Derayea, S.M.S. An Application of Eosin Y for the Selective Spectrophotometric and Spectrofluorimetric Determination of Mebeverine Hydrochloride. Anal. Methods 2014, 6, 2270-2275. https://doi.org/10.1039/C3AY41371C
[23] Panda, S.S.; Kumar Bera, V.V.R.; Sahoo, P.; Sahu, B. Quantitative Estimation of Mebeverine Hydrochloride in Sustained-Release Dosage Form Using an Analytical Lifecycle Management Oriented Stability-Indicating LC Method. J. Liq. Chromatogr. Relat. Technol. 2018, 41, 637-644. https://doi.org/10.1080/10826076.2018.1500376
[24] Naguib, I.A.; Abdelkawy, M. Development and Validation of Stability Indicating HPLC and HPTLC Methods for Determination of Sulpiride and Mebeverine Hydrochloride in Combination. Eur. J. Med. Chem. 2010, 45, 3719-3725. https://doi.org/10.1016/j.ejmech.2010.05.021
[25] Srinivasan, V.; Sivaramakrishnan, H.; Karthikeyan, B.; Balaji T.S.; Vijayabaskar, S. Stress Degradation Studies on Mebeverine Hydrochloride and Development of a Validated Stability Indicating UPLC Method. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1631-1644. https://doi.org/10.1080/10826076.2011.576297
[26] Al Lawati, H.A. J.; Al Dahmani, Z.M.; Varma, G.B.; Suliman, F.E.O. Photoinduced Oxidation of a Tris(2,2'-bipyridyl)ruthenium(II)–peroxodisulfate Chemiluminescence System for the Analysis of Mebeverine HCl Pharmaceutical Formulations and Biological Fluids Using a Two-Chip Device. Luminescence. 2014, 29, 275-283. https://doi.org/10.1002/bio.2540
[27] Turkey, N.S.; Jeber, J.N. A Flow Analysis System Integrating an Optoelectronic Detector for the Quantitative Determination of Active Ingredients in Pharmaceutical Formulations. Microchem. J. 2021, 160, 105710. https://doi.org/10.1016/j.microc.2020.105710
[28] Jeber, J.; Turkey, N.S. A Turbidimetric Method for the Quantitative Determination of Cyproheptadine Hydrochloride in Tablets Using an Optoelectronic Detector Based on the LEDs Array. Int. J. Pharm. Res. 2020, 12, 2911. https://doi.org/10.31838/ijpr/2020.12.04.401
[29] Jeber, J.N. Quantitative Determination of Ephedrine Hydrochloride in Pharmaceutical Injections by Highly Sensitive Turbidimetric and Reversed-Phase Combined with UFLC Methods. Chem. Chem. Technol. 2019, 13, 269-274. https://doi.org/10.23939/chcht13.02.269
[30] Hammood, M.K.; Jeber, J.N.; Muhamad, Y.H. Two Techniques (Spectrophotometric and Turbidimetric) for Determination of Ciprofloxacin HCl in Pharmaceutical Drugs with Comparison between the Techniques. Iraqi J. Sci. 2016, 57, 1620-1628.
[31] Ertokus, G.; Tugrul, A. Spectrophotometric Determination of Acetylsalicylic Acid, Paracetamol and Ascorbic Acid by Chemometric Methods. Chem. Chem. Technol. 2018, 12, 279-284. https://doi.org/10.23939/chcht12.03.279
[32] Smolinska, M.; Коrkunа, O.; Vrublevska, T.; Tеslyar, G. Eriochrome Black T – A New Analytical Reagent for Spectrophotometric Determination of Sulphanilamides. Chem. Chem. Technol. 2015, 9, 401-410. https://doi.org/10.23939/chcht09.04.401
[33] Solodovnik, T.; Stolyarenko, H.; Slis, A.; Kultenko, V. Study of Heat Treatment Effect on Structure and Solubility of Chitosan Films. Chem. Chem. Technol. 2017, 11, 175-179. https://doi.org/10.23939/chcht11.02.175
[34] Menard, K.; Brostow, W.; Menard, N. Photodegradation of Pharmaceuticals Studied with UV Irradiation and Differential Scanning Calorimetry. Chem. Chem. Technol. 2011, 5, 385-388. https://doi.org/10.23939/chcht05.04.385
[35] Nazari, G.; Abolghasemi, H.; Esmaieli, M. Study of Mass Transfer Coefficient of Cephalexin Adsorption onto Walnut Shell-Based Activated Carbon in a Fixed-Bed Column. Chem. Chem. Technol. 2016, 10, 81-86. https://doi.org/10.23939/chcht10.01.081
[36] British Pharmacopoeia, Vols I & II; Her Majesty's Stationery Office: London, 1988.