Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Розроблення пристрою для утримування голки з сорбентом hkust-1 для відбору проб і аналізу btex в повітрі

Shiva Soury1, Abdulrahman Bahrami1, Saber Alizadeh2, Farshid Ghorbani Shahna1, Davood Nematollahi2
Affiliation: 
1 Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran; 2 Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174-38683, Iran; bahrami@umsha.ac.ir
DOI: 
https://doi.org/10.23939/chcht16.02.314
AttachmentSize
PDF icon full_text.pdf1.29 MB
Abstract: 
Вперше розроблений пристрій для утримування голки (NTD) з сорбентом HKUST-1 (металоорганічний каркас на основі Cu), який призначений для відбору проб та аналізу бензену, толуену, етилбензену та ксилену (BTEX) в атмосферному повітрі. Синтезований за допомогою електрохімічного процесу адсорбент HKUST-1 розташований у голці 22 розміру. Для забезпечення різних концентрацій BTEX шприцева помпа підключена до скляної камери для впорскування сполук BTEX з певною швидкістю. Для оптимізації аналітичних параметрів, а саме об’єму проскоку, умов десорбції та умов відбору проб використано програмне забезпечення Design-еxpert (версія 7). Визначено, що оптимальні умови десорбції досягаються за 548 K протягом 6 хв, а найкращі умови відбору проб – за 309 K та 20% вологості. Визначено, що показники LOQ та LOD розробленого пристрою знаходяться в межах 0,52–1,41 та 0,16–0,5 мг/м3, відповідно, а повторюваність та відтворюваність методу становлять 5,5–13,2 та 5,3–12,3 %, відповідно. Встановлено, що NTD, які зберігаються в холодильнику (> 277 K), і за кімнатної температури (298 K), зберігають проби BTEX щонайменше протягом 10 та 6 днів відповідно. Показано, що NTD з сорбентом HKUST-1 може бути використаний як надійний та корисний метод для визначення BTEX у повітрі.
References: 

[1] Durmusoglu, E.; Taspinar, F.; Karademir, A. Health Risk Assessment of BTEX Emissions in the Landfill Environment. J. Hazard. Mater. 2010, 176, 870-877. https://doi.org/10.1016/j.jhazmat.2009.11.117
[2] IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, v. 100F; International Agency for Research on Cancer: Lyon, 2012.
[3] Riboni, N.; Trzcinski, J.W.; Bianchi, F.; Massera, C.; Pinalli, R.; Sidisky, L.; Dalcanale, E.; Careri, M. Conformationally Blocked Quinoxaline Cavitand as Solid-Phase Microextraction Coating for the Selective Detection of BTEX in Air. Anal. Chim. Acta 2016, 905, 79-84. https://doi.org/10.1016/j.aca.2015.12.005
[4] Ma J-Q., Liu L., Wang X.; Chen, L.-Z.; Lin, J.-M.; Zhao, R.-S. Development of Dispersive Solid-Phase Extraction with Polyphenylene Conjugated Microporous Polymers for Sensitive Determination of Phenoxycarboxylic Acids in Environmental Water Samples. J. Hazard. Mater. 2019, 371, 433-439. https://doi.org/10.1016/j.jhazmat.2019.03.033
[5] Wang, R.; Ma, X.; Zhang, X.; Li, X.; Li, D.; Dang, Y. C8-Modified Magnetic Graphene Oxide Based Solid-Phase Extraction Coupled with Dispersive Liquid-Liquid Microextraction for Detection of Trace Phthalate Acid Esters in Water Samples. Ecotox. Environ. Safe. 2019, 170, 789-795. https://doi.org/10.1016/j.ecoenv.2018.12.051
[6] Lendor, S.; Hassani, S.-A.; Boyaci, E.; Singh, V.; Womelsdorf, T.; Pawliszyn, J. Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo. Anal. Chem. 2019, 91, 4896-4905. https://doi.org/10.1021/acs.analchem.9b00995
[7] Ghavidel, F.; Shahtaheri, S.J.; Jazani, R.K.; Torabbeigi, M.; Froushani, A.R.; Khadem, M. Optimization of Solid Phase Microextraction Procedure Followed by Gas Chromatography with Electron Capture Detector for Pesticides Butachlor and Chlorpyrifos. Am. J. Anal. Chem. 2014, 5, 535-546. https://doi.org/10.4236/ajac.2014.59061
[8] Koziel, J.A.; Odziemkowski, M.; Pawliszyn, J. Sampling and Analysis of Airborne Particulate Matter and Aerosols Using In-Needle Trap and SPME Fiber Devices. Anal. Chem. 2001, 73, 47-54. https://doi.org/10.1021/ac000835s
[9] Chen, J.; Zhang, B.; Zheng, D.; Dang, X.; Ai, Y.; Chen, H. A Novel Needle Trap Device Coupled with Gas Chromatography for Determination of Five Fatty Alcohols in Tea Samples. Anal. Methods 2018, 10, 5783-5789. https://doi.org/10.1039/C8AY01894D
[10] Kleeblatt, J.; Schubert, J.K.; Zimmermann, R. Detection of Gaseous Compounds by Needle Trap Sampling and Direct Thermal-Desorption Photoionization Mass Spectrometry: Concept and Demonstrative Application to Breath Gas Analysis. Anal. Chem. 2015, 87, 1773-1781. https://doi.org/10.1021/ac5039829
[11] Mesarchaki, E.; Yassaa, N.; Hein, D.; Lutterbeck, H.E.; Zindler, C.; Williams, J. A Novel Method for the Measurement of VOCs in Seawater Using Needle Trap Devices and GC–MS. Marine Chem. 2014, 159, 1-8. https://doi.org/10.1016/j.marchem.2013.12.001
[12] Reyes-Garcés, N.; Gómez-Ríos, G.A.; Souza Silva, É.A.; Pawliszyn, J. Coupling Needle Trap Devices with Gas Chromatography–Ion Mobility Spectrometry Detection as a Simple Approach for On-Site Quantitative Analysis. J. Chromatogr. A 2013, 1300, 193-198. https://doi.org/10.1016/j.chroma.2013.05.042
[13] Warren, J.M.; Parkinson, D.-R.; Pawliszyn, J. Assessment of Thiol Compounds from Garlic by Automated Headspace Derivatized In-Needle-NTD-GC-MS and Derivatized In-Fiber-SPME-GC-MS. J. Agricult. Food Chem. 2013, 61, 492-500. https://doi.org/10.1021/jf303508m
[14] Eom, I.-Y.; Risticevic, S.; Pawliszyn, J. Simultaneous Sampling and Analysis of Indoor Air Infested with Cimex Lectularius L. (Hemiptera: Cimicidae) by Solid Phase Microextraction, Thin Film Microextraction and Needle Trap Device. Anal. Chim. Acta 2012, 716, 2-10. https://doi.org/10.1016/j.aca.2011.06.010
[15] Vallecillos, L.; Borrull, F.; Sanchez, J.M.; Pocurull, E. Sorbent-Packed Needle Microextraction Trap for Synthetic Musks Determination in Wastewater Samples. Talanta 2015, 132, 548-556. https://doi.org/10.1016/j.talanta.2014.08.016
[16] Eom, I.-Y.; Jung, M.-J. Identification of Coffee Fragrances Using Needle Trap Device-Gas Chromatograph/Mass Spectrometry (NTD-GC/MS). Bull. Korean Chem. Soc. 2013, 34, 1703-1707. https://doi.org/10.5012/bkcs.2013.34.6.1703
[17] Trefz, P.; Kischkel, S.; Hein, D.; James, E.S.; Schubert, J.K.; Miekisch, W. Needle Trap Micro-Extraction for VOC Analysis: Effects of Packing Materials and Desorption Parameters. J. Chromatogr. A 2012, 1219, 29-38. https://doi.org/10.1016/j.chroma.2011.10.077
[18] Alizadeh, S.; Nematollahi, D. Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal–Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. J. Am. Chem. Soc. 2017, 139, 4753-4761. https://doi.org/10.1021/jacs.6b12564
[19] Alizadeh, S.; Nematollahi, D. Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. Sci. Rep. 2019, 9, 14325. https://doi.org/10.1038/s41598-019-50390-y
[20] Liu, C.; Yu, L-Q.; Zhao, Y-T.; Lv, Y-K. Recent Advances in Metal-Organic Frameworks for Adsorption of Common Aromatic Pollutants. Microchim. Acta 2018, 185, 342. https://doi.org/10.1007/s00604-018-2879-2
[21] Li, J-R.; Sculley, J.; Zhou, H-C. Metal–Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869-932. https://doi.org/10.1021/cr200190s
[22] Lin, K-S.; Adhikari, A.K.; Ku, C-N.; Chiang, C.-L.; Kuo, H. Synthesis and Characterization of Porous HKUST-1 Metal Organic Frameworks for Hydrogen Storage. Int. J. Hydrogen Energ. 2012, 37, 13865-13871. https://doi.org/10.1016/j.ijhydene.2012.04.105
[23] Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150. https://doi.org/10.1126/science.283.5405.1148
[24] Bentley, J.; Foo, G.S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D.S.; Nair, S. Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/Paraffin Selectivity in the Metal–Organic Framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043-5053. https://doi.org/10.1021/acs.iecr.6b00774
[25] NIOSH Manual of Analytical Methods; Eller, P., Cassinelli, M., Eds.; Diane Publ., 1994.
[26] Poormohammadi, A.; Bahrami, A.; Farhadian, M.; Ghorbani-Shahna, F.; Ghiasvand, A. Development of Carbotrap B-Packed Needle Trap Device for Determination of Volatile Organic Compounds in Air. J. Chromatogr. A 2017, 1527, 33-42. https://doi.org/10.1016/j.chroma.2017.10.062
[27] Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and optimization of Biosorption Process. Biores. Technol. 2014, 160, 150-160. https://doi.org/10.1016/j.biortech.2014.01.021
[28] Soury, S.; Bahrami, A.; Alizadeh, S.; Ghorbani-Shahna, F.; Nematollahi, D. Development of a Needle Trap Device Packed with Zinc Based Metal-Organic Framework Sorbent for the Sampling and Analysis of Polycyclic Aromatic Hydrocarbons in the Air. Microchem. J. 2019, 148, 346-354. https://doi.org/10.1016/j.microc.2019.05.019
[29] Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835-855. https://doi.org/10.1351/pac200274050835
[30] Zali, S.; Jalali, F.; Es-haghi, A.; Shamsipur, M. New Nanostructure of Polydimethylsiloxane Coating as a Solid-Phase Microextraction Fiber: Application to Analysis of BTEX in Aquatic Environmental Samples. J. Chromatogr. B 2016, 1033, 287-295. https://doi.org/10.1016/j.jchromb.2016.08.045
[31] Orazbayeva, D.; Kenessov, B.; Koziel, J.A.; Nassyrova, D.; Lyabukhova, N.V. Quantification of BTEX in Soil by Headspace SPME–GC–MS Using Combined Standard Addition and Internal Standard Calibration. Chromatographia 2017, 80, 1249-1256. https://doi.org/10.1007/s10337-017-3340-0
[32] Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Competitive Adsorption and Selectivity of Benzene and Water Vapor on the Microporous Metal Organic Frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79-89. https://doi.org/10.1016/j.cej.2014.08.012
[33] Wang, A.; Fang, F.; Pawliszyn, J. Sampling and Determination of Volatile Organic Compounds with Needle Trap Devices. J. Chromatogr. A 2005, 1072, 127-135. https://doi.org/10.1016/j.chroma.2004.12.064
[34] Zeverdegani, S.K.; Bahrami, A.; Rismanchian, M.; Shahna, F.G. Analysis of Xylene in Aqueous Media Using Needle-Trap Microextraction with a Carbon Nanotube Sorbent. J. Sep. Sci. 2014, 37, 1850-1855. https://doi.org/10.1002/jssc.201400262
[35] Warren, J.M.; Pawliszyn, J. Development and Evaluation of Needle Trap Device Geometry and Packing Methods for Automated and Manual Analysis. J. Chromatogr. A 2011, 1218, 8982-8988. https://doi.org/10.1016/j.chroma.2011.10.017