Development of a Needle Trap Device Packed with HKUST-1 Sorbent for Sampling and Analysis of BTEX in Air

Shiva Soury1, Abdulrahman Bahrami1, Saber Alizadeh2, Farshid Ghorbani Shahna1, Davood Nematollahi2
Affiliation: 
1 Center of Excellence for Occupational Health, Occupational Health and Safety Research Center, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran; 2 Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174-38683, Iran; bahrami@umsha.ac.ir
DOI: 
https://doi.org/10.23939/chcht16.02.314
AttachmentSize
PDF icon full_text.pdf1.29 MB
Abstract: 
In this study, we developed a needle trap device packed with HKUST-1 (Cu-based metal-organic framework) for the sampling and analysis of benzene, toluene, ethylbenzene, and xylene (BTEX) in ambient air for the first time. The HKUST-1 was synthesized via the electrochemical process. Afterwards, the adsorbent was packed into 22 gauge needles. To provide the different concentrations of BTEX, the syringe pump was connected to the glass chamber to inject a specific rate of the BTEX compounds. Design-expert software (version 7) was used to optimize the analytical parameters including breakthrough volume, desorption conditions and sampling conditions. The best desorption conditions were achieved at 548 K for 6 min, and the best sampling conditions were determined at 309 K of sampling temperature and 20 % of relative humidity. According to the results, the limit of quantification (LOQ) and limit of detection (LOD) of the developed needle trap device (NTD) were in the range of 0.52–1.41 and 0.16–0.5 mg/m3, respectively. In addition, the repeatability and reproducibility of the method were calculated to be in the range of 5.5–13.2 and 5.3–12.3 %, respectively. The analysis of needles stored in the refrigerator (>277 K) and room temperature (298 K) showed that the NTD can store the BTEX analytes for at least 10 and 6 days, respectively. Our findings indicated that the NTD packed with HKUST-1 sorbent can be used as a trustworthy and useful technique for the determination of BTEX in air.
References: 

[1] Durmusoglu, E.; Taspinar, F.; Karademir, A. Health Risk Assessment of BTEX Emissions in the Landfill Environment. J. Hazard. Mater. 2010, 176, 870-877. https://doi.org/10.1016/j.jhazmat.2009.11.117
https://doi.org/10.1016/j.jhazmat.2009.11.117

[2] IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, v. 100F; International Agency for Research on Cancer: Lyon, 2012.

[3] Riboni, N.; Trzcinski, J.W.; Bianchi, F.; Massera, C.; Pinalli, R.; Sidisky, L.; Dalcanale, E.; Careri, M. Conformationally Blocked Quinoxaline Cavitand as Solid-Phase Microextraction Coating for the Selective Detection of BTEX in Air. Anal. Chim. Acta 2016, 905, 79-84. https://doi.org/10.1016/j.aca.2015.12.005
https://doi.org/10.1016/j.aca.2015.12.005

[4] Ma J-Q., Liu L., Wang X.; Chen, L.-Z.; Lin, J.-M.; Zhao, R.-S. Development of Dispersive Solid-Phase Extraction with Polyphenylene Conjugated Microporous Polymers for Sensitive Determination of Phenoxycarboxylic Acids in Environmental Water Samples. J. Hazard. Mater. 2019, 371, 433-439. https://doi.org/10.1016/j.jhazmat.2019.03.033
https://doi.org/10.1016/j.jhazmat.2019.03.033

[5] Wang, R.; Ma, X.; Zhang, X.; Li, X.; Li, D.; Dang, Y. C8-Modified Magnetic Graphene Oxide Based Solid-Phase Extraction Coupled with Dispersive Liquid-Liquid Microextraction for Detection of Trace Phthalate Acid Esters in Water Samples. Ecotox. Environ. Safe. 2019, 170, 789-795. https://doi.org/10.1016/j.ecoenv.2018.12.051
https://doi.org/10.1016/j.ecoenv.2018.12.051

[6] Lendor, S.; Hassani, S.-A.; Boyaci, E.; Singh, V.; Womelsdorf, T.; Pawliszyn, J. Solid Phase Microextraction-Based Miniaturized Probe and Protocol for Extraction of Neurotransmitters from Brains in Vivo. Anal. Chem. 2019, 91, 4896-4905. https://doi.org/10.1021/acs.analchem.9b00995
https://doi.org/10.1021/acs.analchem.9b00995

[7] Ghavidel, F.; Shahtaheri, S.J.; Jazani, R.K.; Torabbeigi, M.; Froushani, A.R.; Khadem, M. Optimization of Solid Phase Microextraction Procedure Followed by Gas Chromatography with Electron Capture Detector for Pesticides Butachlor and Chlorpyrifos. Am. J. Anal. Chem. 2014, 5, 535-546. https://doi.org/10.4236/ajac.2014.59061
https://doi.org/10.4236/ajac.2014.59061

[8] Koziel, J.A.; Odziemkowski, M.; Pawliszyn, J. Sampling and Analysis of Airborne Particulate Matter and Aerosols Using In-Needle Trap and SPME Fiber Devices. Anal. Chem. 2001, 73, 47-54. https://doi.org/10.1021/ac000835s
https://doi.org/10.1021/ac000835s

[9] Chen, J.; Zhang, B.; Zheng, D.; Dang, X.; Ai, Y.; Chen, H. A Novel Needle Trap Device Coupled with Gas Chromatography for Determination of Five Fatty Alcohols in Tea Samples. Anal. Methods 2018, 10, 5783-5789. https://doi.org/10.1039/C8AY01894D
https://doi.org/10.1039/C8AY01894D

[10] Kleeblatt, J.; Schubert, J.K.; Zimmermann, R. Detection of Gaseous Compounds by Needle Trap Sampling and Direct Thermal-Desorption Photoionization Mass Spectrometry: Concept and Demonstrative Application to Breath Gas Analysis. Anal. Chem. 2015, 87, 1773-1781. https://doi.org/10.1021/ac5039829
https://doi.org/10.1021/ac5039829

[11] Mesarchaki, E.; Yassaa, N.; Hein, D.; Lutterbeck, H.E.; Zindler, C.; Williams, J. A Novel Method for the Measurement of VOCs in Seawater Using Needle Trap Devices and GC-MS. Marine Chem. 2014, 159, 1-8. https://doi.org/10.1016/j.marchem.2013.12.001
https://doi.org/10.1016/j.marchem.2013.12.001

[12] Reyes-Garcés, N.; Gómez-Ríos, G.A.; Souza Silva, É.A.; Pawliszyn, J. Coupling Needle Trap Devices with Gas Chromatography-Ion Mobility Spectrometry Detection as a Simple Approach for On-Site Quantitative Analysis. J. Chromatogr. A 2013, 1300, 193-198. https://doi.org/10.1016/j.chroma.2013.05.042
https://doi.org/10.1016/j.chroma.2013.05.042

[13] Warren, J.M.; Parkinson, D.-R.; Pawliszyn, J. Assessment of Thiol Compounds from Garlic by Automated Headspace Derivatized In-Needle-NTD-GC-MS and Derivatized In-Fiber-SPME-GC-MS. J. Agricult. Food Chem. 2013, 61, 492-500. https://doi.org/10.1021/jf303508m
https://doi.org/10.1021/jf303508m

[14] Eom, I.-Y.; Risticevic, S.; Pawliszyn, J. Simultaneous Sampling and Analysis of Indoor Air Infested with Cimex Lectularius L. (Hemiptera: Cimicidae) by Solid Phase Microextraction, Thin Film Microextraction and Needle Trap Device. Anal. Chim. Acta 2012, 716, 2-10. https://doi.org/10.1016/j.aca.2011.06.010
https://doi.org/10.1016/j.aca.2011.06.010

[15] Vallecillos, L.; Borrull, F.; Sanchez, J.M.; Pocurull, E. Sorbent-Packed Needle Microextraction Trap for Synthetic Musks Determination in Wastewater Samples. Talanta 2015, 132, 548-556. https://doi.org/10.1016/j.talanta.2014.08.016
https://doi.org/10.1016/j.talanta.2014.08.016

[16] Eom, I.-Y.; Jung, M.-J. Identification of Coffee Fragrances Using Needle Trap Device-Gas Chromatograph/Mass Spectrometry (NTD-GC/MS). Bull. Korean Chem. Soc. 2013, 34, 1703-1707. https://doi.org/10.5012/bkcs.2013.34.6.1703
https://doi.org/10.5012/bkcs.2013.34.6.1703

[17] Trefz, P.; Kischkel, S.; Hein, D.; James, E.S.; Schubert, J.K.; Miekisch, W. Needle Trap Micro-Extraction for VOC Analysis: Effects of Packing Materials and Desorption Parameters. J. Chromatogr. A 2012, 1219, 29-38. https://doi.org/10.1016/j.chroma.2011.10.077
https://doi.org/10.1016/j.chroma.2011.10.077

[18] Alizadeh, S.; Nematollahi, D. Electrochemically Assisted Self-Assembly Technique for the Fabrication of Mesoporous Metal-Organic Framework Thin Films: Composition of 3D Hexagonally Packed Crystals with 2D Honeycomb-like Mesopores. J. Am. Chem. Soc. 2017, 139, 4753-4761. https://doi.org/10.1021/jacs.6b12564
https://doi.org/10.1021/jacs.6b12564

[19] Alizadeh, S.; Nematollahi, D. Convergent and Divergent Paired Electrodeposition of Metal-Organic Framework Thin Films. Sci. Rep. 2019, 9, 14325. https://doi.org/10.1038/s41598-019-50390-y
https://doi.org/10.1038/s41598-019-50390-y

[20] Liu, C.; Yu, L-Q.; Zhao, Y-T.; Lv, Y-K. Recent Advances in Metal-Organic Frameworks for Adsorption of Common Aromatic Pollutants. Microchim. Acta 2018, 185, 342. https://doi.org/10.1007/s00604-018-2879-2
https://doi.org/10.1007/s00604-018-2879-2

[21] Li, J-R.; Sculley, J.; Zhou, H-C. Metal-Organic Frameworks for Separations. Chem. Rev. 2012, 112, 869-932. https://doi.org/10.1021/cr200190s
https://doi.org/10.1021/cr200190s

[22] Lin, K-S.; Adhikari, A.K.; Ku, C-N.; Chiang, C.-L.; Kuo, H. Synthesis and Characterization of Porous HKUST-1 Metal Organic Frameworks for Hydrogen Storage. Int. J. Hydrogen Energ. 2012, 37, 13865-13871. https://doi.org/10.1016/j.ijhydene.2012.04.105
https://doi.org/10.1016/j.ijhydene.2012.04.105

[23] Chui, S.S.-Y.; Lo, S.M.-F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148-1150. https://doi.org/10.1126/science.283.5405.1148
https://doi.org/10.1126/science.283.5405.1148

[24] Bentley, J.; Foo, G.S.; Rungta, M.; Sangar, N.; Sievers, C.; Sholl, D.S.; Nair, S. Effects of Open Metal Site Availability on Adsorption Capacity and Olefin/Paraffin Selectivity in the Metal-Organic Framework Cu3(BTC)2. Ind. Eng. Chem. Res. 2016, 55, 5043-5053. https://doi.org/10.1021/acs.iecr.6b00774
https://doi.org/10.1021/acs.iecr.6b00774

[25] NIOSH Manual of Analytical Methods; Eller, P., Cassinelli, M., Eds.; Diane Publ., 1994.

[26] Poormohammadi, A.; Bahrami, A.; Farhadian, M.; Ghorbani-Shahna, F.; Ghiasvand, A. Development of Carbotrap B-Packed Needle Trap Device for Determination of Volatile Organic Compounds in Air. J. Chromatogr. A 2017, 1527, 33-42. https://doi.org/10.1016/j.chroma.2017.10.062
https://doi.org/10.1016/j.chroma.2017.10.062

[27] Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and optimization of Biosorption Process. Biores. Technol. 2014, 160, 150-160. https://doi.org/10.1016/j.biortech.2014.01.021
https://doi.org/10.1016/j.biortech.2014.01.021

[28] Soury, S.; Bahrami, A.; Alizadeh, S.; Ghorbani-Shahna, F.; Nematollahi, D. Development of a Needle Trap Device Packed with Zinc Based Metal-Organic Framework Sorbent for the Sampling and Analysis of Polycyclic Aromatic Hydrocarbons in the Air. Microchem. J. 2019, 148, 346-354. https://doi.org/10.1016/j.microc.2019.05.019
https://doi.org/10.1016/j.microc.2019.05.019

[29] Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized Guidelines for Single-Laboratory Validation of Methods of Analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835-855. https://doi.org/10.1351/pac200274050835
https://doi.org/10.1351/pac200274050835

[30] Zali, S.; Jalali, F.; Es-haghi, A.; Shamsipur, M. New Nanostructure of Polydimethylsiloxane Coating as a Solid-Phase Microextraction Fiber: Application to Analysis of BTEX in Aquatic Environmental Samples. J. Chromatogr. B 2016, 1033, 287-295. https://doi.org/10.1016/j.jchromb.2016.08.045
https://doi.org/10.1016/j.jchromb.2016.08.045

[31] Orazbayeva, D.; Kenessov, B.; Koziel, J.A.; Nassyrova, D.; Lyabukhova, N.V. Quantification of BTEX in Soil by Headspace SPME-GC-MS Using Combined Standard Addition and Internal Standard Calibration. Chromatographia 2017, 80, 1249-1256. https://doi.org/10.1007/s10337-017-3340-0
https://doi.org/10.1007/s10337-017-3340-0

[32] Zhao, Z.; Wang, S.; Yang, Y.; Li, X.; Li, J.; Li, Z. Competitive Adsorption and Selectivity of Benzene and Water Vapor on the Microporous Metal Organic Frameworks (HKUST-1). Chem. Eng. J. 2015, 259, 79-89. https://doi.org/10.1016/j.cej.2014.08.012
https://doi.org/10.1016/j.cej.2014.08.012

[33] Wang, A.; Fang, F.; Pawliszyn, J. Sampling and Determination of Volatile Organic Compounds with Needle Trap Devices. J. Chromatogr. A 2005, 1072, 127-135. https://doi.org/10.1016/j.chroma.2004.12.064
https://doi.org/10.1016/j.chroma.2004.12.064

[34] Zeverdegani, S.K.; Bahrami, A.; Rismanchian, M.; Shahna, F.G. Analysis of Xylene in Aqueous Media Using Needle-Trap Microextraction with a Carbon Nanotube Sorbent. J. Sep. Sci. 2014, 37, 1850-1855. https://doi.org/10.1002/jssc.201400262
https://doi.org/10.1002/jssc.201400262

[35] Warren, J.M.; Pawliszyn, J. Development and Evaluation of Needle Trap Device Geometry and Packing Methods for Automated and Manual Analysis. J. Chromatogr. A 2011, 1218, 8982-8988. https://doi.org/10.1016/j.chroma.2011.10.017
https://doi.org/10.1016/j.chroma.2011.10.017