Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Модифікація фтором як ефективний спосіб покращення характеристик органічних електроактивних сполук (огляд)

Mariia Stanitska1,2, Mykola Obushak2, Juozas Vidas Gražulevičius1
Affiliation: 
1 Department of Polymer Chemistry and Technology, Kaunas University of Technology, Baršausko 59, 51423 Kaunas, Lithuania 2 Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., 79020 Lviv, Ukraine juozas.grazulevicius@ktu.lt
DOI: 
https://doi.org/10.23939/chcht19.01.052
AttachmentSize
PDF icon full_text.pdf541.01 KB
Abstract: 
Функціоналізація органічних напівпровідників атомами фтору та фторовмісними групами може розширити спектр їхніх властивостей: збільшити швидкість транспорту електронів, індукувати залучення темнових триплетних екситонів до емісії через термічно активовану уповільнену флуоресценцію (TADF) або фосфоресценцію за кімнатної температури (RTP), покращити квантовий вихід фотолюмінесценції (PLQY) через формування множинних внутрішньо- та міжмолекулярних взаємодій, підвищити технологічність сполук і, відповідно, знизити вартість виготовлення пристроїв. Для отримання фторовмісних органічних напівпровідників були реалізовані різноманітні синтетичні підходи. У цьому огляді йдеться про деякі з останніх і найцікавіших органічних напівпровідників із зв’язками C–F і C–CF3 та про їхнє застосування.
References: 

[1] Shi, Y. Z.; Wu, H.; Wang, K.; Yu, J.; Ou, X. M.; Zhang, X. H. Recent Progress in Thermally Activated Delayed Fluorescence Emitters for Nondoped Organic Light-Emitting Diodes. Chem. Sci. 2022, 13, 3625–3651. https://doi.org/10.1039/D1SC07180G
[2] Shabir, G.; Saeed, A.; Zahid, W.; Naseer, F.; Riaz, Z.; Khalil, N.; Muneeba; Albericio, F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016–2022). Pharmaceuticals 2023, 16, 1162. https://doi.org/10.3390/PH16081162
[3] Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359. https://doi.org/10.1021/acs.jmedchem.5b00258
[4] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. https://doi.org/10.1039/B610213C
[5] Han, J.; Remete, A. M.; Dobson, L. S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V. A.; O’Hagan, D. Next Generation Organofluorine Containing Blockbuster Drugs. J. Fluor. Chem. 2020, 239, 109639. https://doi.org/10.1016/J.JFLUCHEM.2020.109639
[6] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 444–450. https://doi.org/10.23939/chcht13.04.444
[7] Budnik, O.; Budnik, A.; Sviderskiy, V.; Berladir, K.; Rudenko, P. Structural Conformation of Polytetrafluoroethylene Composite Matrix. Chem. Chem. Technol. 2016, 10, 241–246. https://doi.org/10.23939/chcht10.02.241
[8] Chebotarev, A.; Demchuk, A.; Bevziuk, K.; Snigur, D. Mixed Ligand Complex of Lanthanum(III) and Alizarine-Complexone with Fluoride in Micellar Medium for Spectrophotometric Determination of Total Fluorine. Chem. Chem. Technol. 2020, 14, 1–6. https://doi.org/10.23939/chcht14.01.001
[9] Drobny, J. G. Fluorine-Containing Polymers. In Brydson's Plastics Materials. Eighth Ed.; Gilbert, M., Ed.; Elsevier Ltd. 2017; pp 389–425.
[10] Naren, T.; Jiang, R.; Gu, Q.; Kuang, G.; Chen, L.; Zhang, Q. Fluorinated Organic Compounds as Promising Materials to Protect Lithium Metal Anode: A Review. Mater. Today Energy 2024, 40, 101512. https://doi.org/10.1016/j.mtener.2024.101512
[11] Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated Organic Materials for Electronic and Optoelectronic Applications: The Role of the Fluorine Atom. Chem. Commun. 2007, 1003–1022. https://doi.org/10.1039/B611336B
[12] Burdon, J. Electron Transfer in Organic Fluorine Chemistry. J. Fluor. Chem. 1989, 45, 110. https://doi.org/10.1016/S0022-1139(00)84482-6
[13] Hong, G.; Si, C.; Gupta, A. K.; Bizzarri, C.; Nieger, M.; Samuel, I. D. W.; Zysman-Colman, E.; Bräse, S. Fluorinated Dibenzo[a,c]-Phenazine-Based Green to Red Thermally Activated Delayed Fluorescent OLED Emitters. J. Mater. Chem. C 2022, 10, 4757–4766. https://doi.org/10.1039/D1TC04918F
[14] Li, Y.; Liang, J. J.; Li, H. C.; Cui, L. S.; Fung, M. K.; Barlow, S.; Marder, S. R.; Adachi, C.; Jiang, Z. Q.; Liao, L. S. The Role of Fluorine-Substitution on the π-Bridge in Constructing Effective Thermally Activated Delayed Fluorescence Molecules. J. Mater. Chem. C 2018, 6, 5536–5541. https://doi.org/10.1039/C8TC01158C
[15] Guo, Q.; Huang, Z.; Liu, J.; Li, X.; Zheng, Y.; Gao, X.; Liu, H.; Li, J. Positional Effects of Fluorine Substitution on Room Temperature Phosphorescence in Hexaphenylmelamine Derivatives. New J. Chem. 2025, 49, 674–678. https://doi.org/10.1039/D4NJ04627G
[16] Skhirtladze, L.; Leitonas, K.; Bucinskas, A.; Woon, K. L.; Volyniuk, D.; Keruckienė, R.; Mahmoudi, M.; Lapkowski, M.; Ariffin, A.; Grazulevicius, J. V. Turn on of Room Temperature Phosphorescence of Donor-Acceptor-Donor Type Compounds via Transformation of Excited States by Rigid Hosts for Oxygen Sensing. Sensors Actuators B Chem. 2023, 380, 133295. https://doi.org/10.1016/J.SNB.2023.133295
[17] Lee, M. W.; Kim, J. Y.; Ko, M. J. Enhanced Photovoltaic Performance of D-π-A Organic Sensitizers by Simple Fluorination of Acceptor Unit. Org. Electron. 2022, 108, 106606. https://doi.org/10.1016/J.ORGEL.2022.106606.
[18] Chen, J.; Zhu, X.; Zhang, J.; Wei, L. Fluorinated Hole Transport Material Resistant to High Annealing Temperature Applied in Inverted Perovskites Solar Cells. Synth. Met. 2024, 306, 117647. https://doi.org/10.1016/J.SYNTHMET.2024.117647
[19] Stössel, M.; Staudigel, J.; Steuber, F.; Simmerer, J.; Winnacker, A. Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emitting-Devices. Appl. Phys. A 1999, 68, 387–390. https://doi.org/10.1007/S003390050910
[20] Battaglia, M. R.; Buckingham, A. D.; Williams, J. H. The Electric Quadrupole Moments of Benzene and Hexafluorobenzene. Chem. Phys. Lett. 1981, 78, 421–423. https://doi.org/10.1016/0009-2614(81)85228-1
[21] Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2000, 122, 10240–10241. https://doi.org/10.1021/ja002309o
[22] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234–238. https://doi.org/10.1038/nature11687
[23] Cho, Y. J.; Chin, B. D.; Jeon, S. K.; Lee, J. Y. 20% External Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescent Devices. Adv. Funct. Mater. 2015, 25, 6786–6792. https://doi.org/10.1002/ADFM.201502995
[24] Zhu, X. D.; Tian, Q. S.; Zheng, Q.; Wang, Y. K.; Yuan, Y.; Li, Y.; Jiang, Z. Q.; Liao, L. S. Deep-Blue Thermally Activated Delayed Fluorescence Materials with High Glass Transition Temperature. J. Lumin. 2019, 206, 146–153. https://doi.org/10.1016/J.JLUMIN.2018.10.017
[25] Hussain, A.; Kanwal, F.; Irfan, A.; Hassan, M.; Zhang, J. Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS Omega 2023, 8, 15638–15649. https://doi.org/10.1021/acsomega.3c01098
[26] Paras; Ramachandran, C. N. Tuning of the Singlet–Triplet Energy Gap of Donor-Linker-Acceptor Based Thermally Activated Delayed Fluorescent Emitters. J. Fluoresc. 2024, 34, 1343–1351. https://doi.org/10.1007/S10895-023-03365-2/FIGURES/3
[27] Hladka, I.; Volyniuk, D.; Bezvikonnyi, O.; Kinzhybalo, V.; Bednarchuk, T. J.; Danyliv, Y.; Lytvyn, R.; Lazauskas, A.; Grazulevicius, J. V. Polymorphism of Derivatives of tert-Butyl Substituted Acridan and Perfluorobiphenyl as Sky-Blue OLED Emitters Exhibiting Aggregation Induced Thermally Activated Delayed Fluorescence. J. Mater. Chem. C 2018, 6, 13179–13189. https://doi.org/10.1039/C8TC04867C
[28] Danyliv, I.; Danyliv, Y.; Lytvyn, R.; Bezvikonnyi, O.; Volyniuk, D.; Simokaitiene, J.; Ivaniuk, K.; Tsiko, U.; Tomkeviciene, A.; Dabulienė, A.; et al. Multifunctional Derivatives of Donor-Substituted Perfluorobiphenyl for OLEDs and Optical Oxygen Sensors. Dye. Pigment. 2021, 193, 109493. https://doi.org/10.1016/J.DYEPIG.2021.109493
[29] Danyliv, I.; Danyliv, Y.; Stanitska, M.; Bezvikonnyi, O.; Volyniuk, D.; Lytvyn, R.; Horak, Y.; Matulis, V.; Lyakhov, D.; Michels, D.; et al. Effects of the Nature of Donor Substituents on the Photophysical and Electroluminescence Properties of Derivatives of Perfluorobiphenyl: Donor-Acceptor versus Donor-Acceptor-Donor Type AIEE/TADF Emitters. J. Mater. Chem. C 2024, 12, 2911–2925. https://doi.org/10.1039/D3TC04633H
[30] Skuodis, E.; Bezvikonnyi, O.; Tomkeviciene, A.; Volyniuk, D.; Mimaite, V.; Lazauskas, A.; Bucinskas, A.; Keruckiene, R.; Sini, G.; Grazulevicius, J. V. Aggregation, Thermal Annealing, and Hosting Effects on Performances of an Acridan-Based TADF Emitter. Org. Electron. 2018, 63, 29–40. https://doi.org/10.1016/J.ORGEL.2018.09.002
[31] Ge, X.; Li, G.; Guo, D.; Yang, Z.; Mao, Z.; Zhao, J.; Chi, Z. A Strategy for Designing Multifunctional TADF Materials for High-Performance Non-Doped OLEDs by Intramolecular Halogen Bonding. Adv. Opt. Mater. 2024, 12, 2302535. https://doi.org/10.1002/ADOM.202302535.
[32] Yuan, W.; Jin, G.; Su, N.; Hu, D.; Shi, W.; Zheng, Y. X.; Tao, Y. The Electron Inductive Effect of Dual Non-Conjugated Trifluoromethyl Acceptors for Highly Efficient Thermally Activated Delayed Fluorescence OLEDs. Dye. Pigment. 2020, 183, 108705. https://doi.org/10.1016/J.DYEPIG.2020.108705
[33] Ward, J. S.; Danos, A.; Stachelek, P.; Fox, M. A.; Batsanov, A. S.; Monkman, A. P.; Bryce, M. R. Exploiting Trifluoromethyl Substituents for Tuning Orbital Character of Singlet and Triplet States to Increase the Rate of Thermally Activated Delayed Fluorescence. Mater. Chem. Front. 2020, 4, 3602–3615. https://doi.org/10.1039/D0QM00429D
[34] Akiyama, M.; Yasuda, Y.; Kisoi, D.; Kusakabe, Y.; Kaji, H.; Imahori, H. The Perfluoroadamantyl Group: A Bulky and Highly Electron-Withdrawing Substituent in Thermally Activated Delayed Fluorescence Materials. Bull. Chem. Soc. Jpn. 2024, 97, uoae025. https://doi.org/10.1093/BULCSJ/UOAE025
[35] Wada, Y.; Kubo, S.; Kaji, H.; Wada, Y.; Kubo, S.; Kaji, H. Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. Adv. Mater. 2018, 30, 1705641. https://doi.org/10.1002/ADMA.201705641.
[36] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta Hatakeyama, T. T.; Nakajima, K.; et al. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777–2781. https://doi.org/10.1002/ADMA.201505491
[37] Wu, S.; Zhang, L.; Wang, J.; Kumar Gupta, A.; Samuel, I. D. W.; Zysman-Colman, E. Merging Boron and Carbonyl Based MR-TADF Emitter Designs to Achieve High Performance Pure Blue OLEDs**. Angew. Chemie Int. Ed. 2023, 62, e202305182. https://doi.org/10.1002/ANIE.202305182
[38] Hua, T.; Li, N.; Huang, Z.; Zhang, Y.; Wang, L.; Chen, Z.; Miao, J.; Cao, X.; Wang, X.; Yang, C. Narrowband Near-Infrared Multiple-Resonance Thermally Activated Delayed Fluorescence Emitters towards High-Performance and Stable Organic Light-Emitting Diodes. Angew. Chemie Int. Ed. 2024, 63, e202318433. https://doi.org/10.1002/ANIE.202318433
[39] Cai, X.; Xu, Y.; Pan, Y.; Li, L.; Pu, Y.; Zhuang, X.; Li, C.; Wang, Y. Solution-Processable Pure-Red Multiple Resonance-Induced Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode with External Quantum Efficiency over 20 %. Angew. Chemie Int. Ed. 2023, 62, e202216473. https://doi.org/10.1002/ANIE.202216473
[40] Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angew. Chemie 2019, 131, 17068–17073. https://doi.org/10.1002/ANGE.201911266
[41] Oda, S.; Kawakami, B.; Horiuchi, M.; Yamasaki, Y.; Kawasumi, R.; Hatakeyama, T. Ultra-Narrowband Blue Multi-Resonance Thermally Activated Delayed Fluorescence Materials. Adv. Sci. 2023, 10, 2205070. https://doi.org/10.1002/ADVS.202205070