Modification by Fluorine as Efficient Tool for the Enhancement of the Performance of Organic Electroactive Compounds – A Review

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Mariia Stanitska1,2, Mykola Obushak2, Juozas Vidas Gražulevičius1
Affiliation: 
1 Department of Polymer Chemistry and Technology, Kaunas University of Technology, Baršausko 59, 51423 Kaunas, Lithuania 2 Ivan Franko National University of Lviv, 6 Kyryla i Mefodiya St., 79020 Lviv, Ukraine juozas.grazulevicius@ktu.lt
DOI: 
https://doi.org/10.23939/chcht19.01.052
AttachmentSize
PDF icon full_text.pdf541.01 KB
Abstract: 
Functionalization of organic semiconductors with fluorine atoms and fluorine-containing groups can give rise to a wide variety of properties, for example, increase the rate of electron transport, induce harvesting of non-emissive triplet excitons through thermally activated delayed fluorescence (TADF) or room temperature phosphorescence (RTP), improve photoluminescence quantum yield (PLQY) by forming multiple intra- and intermolecular interactions, and increase solution-processabitily of the compounds, therefore, lowering the cost of device fabrication. Diverse synthetic approaches have been implemented to afford fluorinated organic semiconductors. In this review, we discuss some of the recent and most interesting organic semiconductors with C–F and C–CF3 bonds as well as their application.
References: 

[1] Shi, Y. Z.; Wu, H.; Wang, K.; Yu, J.; Ou, X. M.; Zhang, X. H. Recent Progress in Thermally Activated Delayed Fluorescence Emitters for Nondoped Organic Light-Emitting Diodes. Chem. Sci. 2022, 13, 3625-3651. https://doi.org/10.1039/D1SC07180G
https://doi.org/10.1039/D1SC07180G

[2] Shabir, G.; Saeed, A.; Zahid, W.; Naseer, F.; Riaz, Z.; Khalil, N.; Muneeba; Albericio, F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016-2022). Pharmaceuticals 2023, 16, 1162. https://doi.org/10.3390/PH16081162
https://doi.org/10.3390/ph16081162

[3] Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315-8359. https://doi.org/10.1021/acs.jmedchem.5b00258
https://doi.org/10.1021/acs.jmedchem.5b00258

[4] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320-330. https://doi.org/10.1039/B610213C
https://doi.org/10.1039/B610213C

[5] Han, J.; Remete, A. M.; Dobson, L. S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V. A.; O'Hagan, D. Next Generation Organofluorine Containing Blockbuster Drugs. J. Fluor. Chem. 2020, 239, 109639. https://doi.org/10.1016/J.JFLUCHEM.2020.109639
https://doi.org/10.1016/j.jfluchem.2020.109639

[6] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 444-450. https://doi.org/10.23939/chcht13.04.444
https://doi.org/10.23939/chcht13.04.444

[7] Budnik, O.; Budnik, A.; Sviderskiy, V.; Berladir, K.; Rudenko, P. Structural Conformation of Polytetrafluoroethylene Composite Matrix. Chem. Chem. Technol. 2016, 10, 241-246. https://doi.org/10.23939/chcht10.02.241
https://doi.org/10.23939/chcht10.02.241

[8] Chebotarev, A.; Demchuk, A.; Bevziuk, K.; Snigur, D. Mixed Ligand Complex of Lanthanum(III) and Alizarine-Complexone with Fluoride in Micellar Medium for Spectrophotometric Determination of Total Fluorine. Chem. Chem. Technol. 2020, 14, 1-6. https://doi.org/10.23939/chcht14.01.001
https://doi.org/10.23939/chcht14.01.001

[9] Drobny, J. G. Fluorine-Containing Polymers. In Brydson's Plastics Materials. Eighth Ed.; Gilbert, M., Ed.; Elsevier Ltd. 2017; pp 389-425.
https://doi.org/10.1016/B978-0-323-35824-8.00014-1

[10] Naren, T.; Jiang, R.; Gu, Q.; Kuang, G.; Chen, L.; Zhang, Q. Fluorinated Organic Compounds as Promising Materials to Protect Lithium Metal Anode: A Review. Mater. Today Energy 2024, 40, 101512. https://doi.org/10.1016/j.mtener.2024.101512
https://doi.org/10.1016/j.mtener.2024.101512

[11] Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated Organic Materials for Electronic and Optoelectronic Applications: The Role of the Fluorine Atom. Chem. Commun. 2007, 1003-1022. https://doi.org/10.1039/B611336B
https://doi.org/10.1039/B611336B

[12] Burdon, J. Electron Transfer in Organic Fluorine Chemistry. J. Fluor. Chem. 1989, 45, 110. https://doi.org/10.1016/S0022-1139(00)84482-6
https://doi.org/10.1016/S0022-1139(00)84482-6

[13] Hong, G.; Si, C.; Gupta, A. K.; Bizzarri, C.; Nieger, M.; Samuel, I. D. W.; Zysman-Colman, E.; Bräse, S. Fluorinated Dibenzo[a,c]-Phenazine-Based Green to Red Thermally Activated Delayed Fluorescent OLED Emitters. J. Mater. Chem. C 2022, 10, 4757-4766. https://doi.org/10.1039/D1TC04918F
https://doi.org/10.1039/D1TC04918F

[14] Li, Y.; Liang, J. J.; Li, H. C.; Cui, L. S.; Fung, M. K.; Barlow, S.; Marder, S. R.; Adachi, C.; Jiang, Z. Q.; Liao, L. S. The Role of Fluorine-Substitution on the π-Bridge in Constructing Effective Thermally Activated Delayed Fluorescence Molecules. J. Mater. Chem. C 2018, 6, 5536-5541. https://doi.org/10.1039/C8TC01158C
https://doi.org/10.1039/C8TC01158C

[15] Guo, Q.; Huang, Z.; Liu, J.; Li, X.; Zheng, Y.; Gao, X.; Liu, H.; Li, J. Positional Effects of Fluorine Substitution on Room Temperature Phosphorescence in Hexaphenylmelamine Derivatives. New J. Chem. 2025, 49, 674-678. https://doi.org/10.1039/D4NJ04627G
https://doi.org/10.1039/D4NJ04627G

[16] Skhirtladze, L.; Leitonas, K.; Bucinskas, A.; Woon, K. L.; Volyniuk, D.; Keruckienė, R.; Mahmoudi, M.; Lapkowski, M.; Ariffin, A.; Grazulevicius, J. V. Turn on of Room Temperature Phosphorescence of Donor-Acceptor-Donor Type Compounds via Transformation of Excited States by Rigid Hosts for Oxygen Sensing. Sensors Actuators B Chem. 2023, 380, 133295. https://doi.org/10.1016/J.SNB.2023.133295
https://doi.org/10.1016/j.snb.2023.133295

[17] Lee, M. W.; Kim, J. Y.; Ko, M. J. Enhanced Photovoltaic Performance of D-π-A Organic Sensitizers by Simple Fluorination of Acceptor Unit. Org. Electron. 2022, 108, 106606. https://doi.org/10.1016/J.ORGEL.2022.106606.
https://doi.org/10.1016/j.orgel.2022.106606

[18] Chen, J.; Zhu, X.; Zhang, J.; Wei, L. Fluorinated Hole Transport Material Resistant to High Annealing Temperature Applied in Inverted Perovskites Solar Cells. Synth. Met. 2024, 306, 117647. https://doi.org/10.1016/J.SYNTHMET.2024.117647
https://doi.org/10.1016/j.synthmet.2024.117647

[19] Stössel, M.; Staudigel, J.; Steuber, F.; Simmerer, J.; Winnacker, A. Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emitting-Devices. Appl. Phys. A 1999, 68, 387-390. https://doi.org/10.1007/S003390050910
https://doi.org/10.1007/s003390050910

[20] Battaglia, M. R.; Buckingham, A. D.; Williams, J. H. The Electric Quadrupole Moments of Benzene and Hexafluorobenzene. Chem. Phys. Lett. 1981, 78, 421-423. https://doi.org/10.1016/0009-2614(81)85228-1
https://doi.org/10.1016/0009-2614(81)85228-1

[21] Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2000, 122, 10240-10241. https://doi.org/10.1021/ja002309o
https://doi.org/10.1021/ja002309o

[22] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234-238. https://doi.org/10.1038/nature11687
https://doi.org/10.1038/nature11687

[23] Cho, Y. J.; Chin, B. D.; Jeon, S. K.; Lee, J. Y. 20% External Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescent Devices. Adv. Funct. Mater. 2015, 25, 6786-6792. https://doi.org/10.1002/ADFM.201502995
https://doi.org/10.1002/adfm.201502995

[24] Zhu, X. D.; Tian, Q. S.; Zheng, Q.; Wang, Y. K.; Yuan, Y.; Li, Y.; Jiang, Z. Q.; Liao, L. S. Deep-Blue Thermally Activated Delayed Fluorescence Materials with High Glass Transition Temperature. J. Lumin. 2019, 206, 146-153. https://doi.org/10.1016/J.JLUMIN.2018.10.017
https://doi.org/10.1016/j.jlumin.2018.10.017

[25] Hussain, A.; Kanwal, F.; Irfan, A.; Hassan, M.; Zhang, J. Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS Omega 2023, 8, 15638-15649. https://doi.org/10.1021/acsomega.3c01098
https://doi.org/10.1021/acsomega.3c01098

[26] Paras; Ramachandran, C. N. Tuning of the Singlet-Triplet Energy Gap of Donor-Linker-Acceptor Based Thermally Activated Delayed Fluorescent Emitters. J. Fluoresc. 2024, 34, 1343-1351. https://doi.org/10.1007/S10895-023-03365-2/FIGURES/3
https://doi.org/10.1007/s10895-023-03365-2

[27] Hladka, I.; Volyniuk, D.; Bezvikonnyi, O.; Kinzhybalo, V.; Bednarchuk, T. J.; Danyliv, Y.; Lytvyn, R.; Lazauskas, A.; Grazulevicius, J. V. Polymorphism of Derivatives of tert-Butyl Substituted Acridan and Perfluorobiphenyl as Sky-Blue OLED Emitters Exhibiting Aggregation Induced Thermally Activated Delayed Fluorescence. J. Mater. Chem. C 2018, 6, 13179-13189. https://doi.org/10.1039/C8TC04867C
https://doi.org/10.1039/C8TC04867C

[28] Danyliv, I.; Danyliv, Y.; Lytvyn, R.; Bezvikonnyi, O.; Volyniuk, D.; Simokaitiene, J.; Ivaniuk, K.; Tsiko, U.; Tomkeviciene, A.; Dabulienė, A.; et al. Multifunctional Derivatives of Donor-Substituted Perfluorobiphenyl for OLEDs and Optical Oxygen Sensors. Dye. Pigment. 2021, 193, 109493. https://doi.org/10.1016/J.DYEPIG.2021.109493
https://doi.org/10.1016/j.dyepig.2021.109493

[29] Danyliv, I.; Danyliv, Y.; Stanitska, M.; Bezvikonnyi, O.; Volyniuk, D.; Lytvyn, R.; Horak, Y.; Matulis, V.; Lyakhov, D.; Michels, D.; et al. Effects of the Nature of Donor Substituents on the Photophysical and Electroluminescence Properties of Derivatives of Perfluorobiphenyl: Donor-Acceptor versus Donor-Acceptor-Donor Type AIEE/TADF Emitters. J. Mater. Chem. C 2024, 12, 2911-2925. https://doi.org/10.1039/D3TC04633H
https://doi.org/10.1039/D3TC04633H

[30] Skuodis, E.; Bezvikonnyi, O.; Tomkeviciene, A.; Volyniuk, D.; Mimaite, V.; Lazauskas, A.; Bucinskas, A.; Keruckiene, R.; Sini, G.; Grazulevicius, J. V. Aggregation, Thermal Annealing, and Hosting Effects on Performances of an Acridan-Based TADF Emitter. Org. Electron. 2018, 63, 29-40. https://doi.org/10.1016/J.ORGEL.2018.09.002
https://doi.org/10.1016/j.orgel.2018.09.002

[31] Ge, X.; Li, G.; Guo, D.; Yang, Z.; Mao, Z.; Zhao, J.; Chi, Z. A Strategy for Designing Multifunctional TADF Materials for High-Performance Non-Doped OLEDs by Intramolecular Halogen Bonding. Adv. Opt. Mater. 2024, 12, 2302535. https://doi.org/10.1002/ADOM.202302535.
https://doi.org/10.1002/adom.202302535

[32] Yuan, W.; Jin, G.; Su, N.; Hu, D.; Shi, W.; Zheng, Y. X.; Tao, Y. The Electron Inductive Effect of Dual Non-Conjugated Trifluoromethyl Acceptors for Highly Efficient Thermally Activated Delayed Fluorescence OLEDs. Dye. Pigment. 2020, 183, 108705. https://doi.org/10.1016/J.DYEPIG.2020.108705
https://doi.org/10.1016/j.dyepig.2020.108705

[33] Ward, J. S.; Danos, A.; Stachelek, P.; Fox, M. A.; Batsanov, A. S.; Monkman, A. P.; Bryce, M. R. Exploiting Trifluoromethyl Substituents for Tuning Orbital Character of Singlet and Triplet States to Increase the Rate of Thermally Activated Delayed Fluorescence. Mater. Chem. Front. 2020, 4, 3602-3615. https://doi.org/10.1039/D0QM00429D
https://doi.org/10.1039/D0QM00429D

[34] Akiyama, M.; Yasuda, Y.; Kisoi, D.; Kusakabe, Y.; Kaji, H.; Imahori, H. The Perfluoroadamantyl Group: A Bulky and Highly Electron-Withdrawing Substituent in Thermally Activated Delayed Fluorescence Materials. Bull. Chem. Soc. Jpn. 2024, 97, uoae025. https://doi.org/10.1093/BULCSJ/UOAE025
https://doi.org/10.1093/bulcsj/uoae025

[35] Wada, Y.; Kubo, S.; Kaji, H.; Wada, Y.; Kubo, S.; Kaji, H. Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. Adv. Mater. 2018, 30, 1705641. https://doi.org/10.1002/ADMA.201705641.
https://doi.org/10.1002/adma.201705641

[36] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta Hatakeyama, T. T.; Nakajima, K.; et al. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777-2781. https://doi.org/10.1002/ADMA.201505491
https://doi.org/10.1002/adma.201505491

[37] Wu, S.; Zhang, L.; Wang, J.; Kumar Gupta, A.; Samuel, I. D. W.; Zysman-Colman, E. Merging Boron and Carbonyl Based MR-TADF Emitter Designs to Achieve High Performance Pure Blue OLEDs**. Angew. Chemie Int. Ed. 2023, 62, e202305182. https://doi.org/10.1002/ANIE.202305182
https://doi.org/10.1002/anie.202305182

[38] Hua, T.; Li, N.; Huang, Z.; Zhang, Y.; Wang, L.; Chen, Z.; Miao, J.; Cao, X.; Wang, X.; Yang, C. Narrowband Near-Infrared Multiple-Resonance Thermally Activated Delayed Fluorescence Emitters towards High-Performance and Stable Organic Light-Emitting Diodes. Angew. Chemie Int. Ed. 2024, 63, e202318433. https://doi.org/10.1002/ANIE.202318433
https://doi.org/10.1002/anie.202318433

[39] Cai, X.; Xu, Y.; Pan, Y.; Li, L.; Pu, Y.; Zhuang, X.; Li, C.; Wang, Y. Solution-Processable Pure-Red Multiple Resonance-Induced Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode with External Quantum Efficiency over 20 %. Angew. Chemie Int. Ed. 2023, 62, e202216473. https://doi.org/10.1002/ANIE.202216473
https://doi.org/10.1002/anie.202216473

[40] Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angew. Chemie 2019, 131, 17068-17073. https://doi.org/10.1002/ANGE.201911266
https://doi.org/10.1002/ange.201911266

[41] Oda, S.; Kawakami, B.; Horiuchi, M.; Yamasaki, Y.; Kawasumi, R.; Hatakeyama, T. Ultra-Narrowband Blue Multi-Resonance Thermally Activated Delayed Fluorescence Materials. Adv. Sci. 2023, 10, 2205070. https://doi.org/10.1002/ADVS.202205070
https://doi.org/10.1002/advs.202205070