Attachment | Size |
---|---|
![]() | 541.01 KB |
[1] Shi, Y. Z.; Wu, H.; Wang, K.; Yu, J.; Ou, X. M.; Zhang, X. H. Recent Progress in Thermally Activated Delayed Fluorescence Emitters for Nondoped Organic Light-Emitting Diodes. Chem. Sci. 2022, 13, 3625-3651. https://doi.org/10.1039/D1SC07180G
https://doi.org/10.1039/D1SC07180G
[2] Shabir, G.; Saeed, A.; Zahid, W.; Naseer, F.; Riaz, Z.; Khalil, N.; Muneeba; Albericio, F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016-2022). Pharmaceuticals 2023, 16, 1162. https://doi.org/10.3390/PH16081162
https://doi.org/10.3390/ph16081162
[3] Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315-8359. https://doi.org/10.1021/acs.jmedchem.5b00258
https://doi.org/10.1021/acs.jmedchem.5b00258
[4] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320-330. https://doi.org/10.1039/B610213C
https://doi.org/10.1039/B610213C
[5] Han, J.; Remete, A. M.; Dobson, L. S.; Kiss, L.; Izawa, K.; Moriwaki, H.; Soloshonok, V. A.; O'Hagan, D. Next Generation Organofluorine Containing Blockbuster Drugs. J. Fluor. Chem. 2020, 239, 109639. https://doi.org/10.1016/J.JFLUCHEM.2020.109639
https://doi.org/10.1016/j.jfluchem.2020.109639
[6] Mukbaniani, O.; Aneli, J.; Plonska-Brzezinska, M.; Tatrishvili, T.; Markarashvili, E. Fluorine Containing Siloxane Based Polymer Electrolyte Membranes. Chem. Chem. Technol. 2019, 13, 444-450. https://doi.org/10.23939/chcht13.04.444
https://doi.org/10.23939/chcht13.04.444
[7] Budnik, O.; Budnik, A.; Sviderskiy, V.; Berladir, K.; Rudenko, P. Structural Conformation of Polytetrafluoroethylene Composite Matrix. Chem. Chem. Technol. 2016, 10, 241-246. https://doi.org/10.23939/chcht10.02.241
https://doi.org/10.23939/chcht10.02.241
[8] Chebotarev, A.; Demchuk, A.; Bevziuk, K.; Snigur, D. Mixed Ligand Complex of Lanthanum(III) and Alizarine-Complexone with Fluoride in Micellar Medium for Spectrophotometric Determination of Total Fluorine. Chem. Chem. Technol. 2020, 14, 1-6. https://doi.org/10.23939/chcht14.01.001
https://doi.org/10.23939/chcht14.01.001
[9] Drobny, J. G. Fluorine-Containing Polymers. In Brydson's Plastics Materials. Eighth Ed.; Gilbert, M., Ed.; Elsevier Ltd. 2017; pp 389-425.
https://doi.org/10.1016/B978-0-323-35824-8.00014-1
[10] Naren, T.; Jiang, R.; Gu, Q.; Kuang, G.; Chen, L.; Zhang, Q. Fluorinated Organic Compounds as Promising Materials to Protect Lithium Metal Anode: A Review. Mater. Today Energy 2024, 40, 101512. https://doi.org/10.1016/j.mtener.2024.101512
https://doi.org/10.1016/j.mtener.2024.101512
[11] Babudri, F.; Farinola, G. M.; Naso, F.; Ragni, R. Fluorinated Organic Materials for Electronic and Optoelectronic Applications: The Role of the Fluorine Atom. Chem. Commun. 2007, 1003-1022. https://doi.org/10.1039/B611336B
https://doi.org/10.1039/B611336B
[12] Burdon, J. Electron Transfer in Organic Fluorine Chemistry. J. Fluor. Chem. 1989, 45, 110. https://doi.org/10.1016/S0022-1139(00)84482-6
https://doi.org/10.1016/S0022-1139(00)84482-6
[13] Hong, G.; Si, C.; Gupta, A. K.; Bizzarri, C.; Nieger, M.; Samuel, I. D. W.; Zysman-Colman, E.; Bräse, S. Fluorinated Dibenzo[a,c]-Phenazine-Based Green to Red Thermally Activated Delayed Fluorescent OLED Emitters. J. Mater. Chem. C 2022, 10, 4757-4766. https://doi.org/10.1039/D1TC04918F
https://doi.org/10.1039/D1TC04918F
[14] Li, Y.; Liang, J. J.; Li, H. C.; Cui, L. S.; Fung, M. K.; Barlow, S.; Marder, S. R.; Adachi, C.; Jiang, Z. Q.; Liao, L. S. The Role of Fluorine-Substitution on the π-Bridge in Constructing Effective Thermally Activated Delayed Fluorescence Molecules. J. Mater. Chem. C 2018, 6, 5536-5541. https://doi.org/10.1039/C8TC01158C
https://doi.org/10.1039/C8TC01158C
[15] Guo, Q.; Huang, Z.; Liu, J.; Li, X.; Zheng, Y.; Gao, X.; Liu, H.; Li, J. Positional Effects of Fluorine Substitution on Room Temperature Phosphorescence in Hexaphenylmelamine Derivatives. New J. Chem. 2025, 49, 674-678. https://doi.org/10.1039/D4NJ04627G
https://doi.org/10.1039/D4NJ04627G
[16] Skhirtladze, L.; Leitonas, K.; Bucinskas, A.; Woon, K. L.; Volyniuk, D.; Keruckienė, R.; Mahmoudi, M.; Lapkowski, M.; Ariffin, A.; Grazulevicius, J. V. Turn on of Room Temperature Phosphorescence of Donor-Acceptor-Donor Type Compounds via Transformation of Excited States by Rigid Hosts for Oxygen Sensing. Sensors Actuators B Chem. 2023, 380, 133295. https://doi.org/10.1016/J.SNB.2023.133295
https://doi.org/10.1016/j.snb.2023.133295
[17] Lee, M. W.; Kim, J. Y.; Ko, M. J. Enhanced Photovoltaic Performance of D-π-A Organic Sensitizers by Simple Fluorination of Acceptor Unit. Org. Electron. 2022, 108, 106606. https://doi.org/10.1016/J.ORGEL.2022.106606.
https://doi.org/10.1016/j.orgel.2022.106606
[18] Chen, J.; Zhu, X.; Zhang, J.; Wei, L. Fluorinated Hole Transport Material Resistant to High Annealing Temperature Applied in Inverted Perovskites Solar Cells. Synth. Met. 2024, 306, 117647. https://doi.org/10.1016/J.SYNTHMET.2024.117647
https://doi.org/10.1016/j.synthmet.2024.117647
[19] Stössel, M.; Staudigel, J.; Steuber, F.; Simmerer, J.; Winnacker, A. Impact of the Cathode Metal Work Function on the Performance of Vacuum-Deposited Organic Light Emitting-Devices. Appl. Phys. A 1999, 68, 387-390. https://doi.org/10.1007/S003390050910
https://doi.org/10.1007/s003390050910
[20] Battaglia, M. R.; Buckingham, A. D.; Williams, J. H. The Electric Quadrupole Moments of Benzene and Hexafluorobenzene. Chem. Phys. Lett. 1981, 78, 421-423. https://doi.org/10.1016/0009-2614(81)85228-1
https://doi.org/10.1016/0009-2614(81)85228-1
[21] Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2000, 122, 10240-10241. https://doi.org/10.1021/ja002309o
https://doi.org/10.1021/ja002309o
[22] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. Nature 2012, 492, 234-238. https://doi.org/10.1038/nature11687
https://doi.org/10.1038/nature11687
[23] Cho, Y. J.; Chin, B. D.; Jeon, S. K.; Lee, J. Y. 20% External Quantum Efficiency in Solution-Processed Blue Thermally Activated Delayed Fluorescent Devices. Adv. Funct. Mater. 2015, 25, 6786-6792. https://doi.org/10.1002/ADFM.201502995
https://doi.org/10.1002/adfm.201502995
[24] Zhu, X. D.; Tian, Q. S.; Zheng, Q.; Wang, Y. K.; Yuan, Y.; Li, Y.; Jiang, Z. Q.; Liao, L. S. Deep-Blue Thermally Activated Delayed Fluorescence Materials with High Glass Transition Temperature. J. Lumin. 2019, 206, 146-153. https://doi.org/10.1016/J.JLUMIN.2018.10.017
https://doi.org/10.1016/j.jlumin.2018.10.017
[25] Hussain, A.; Kanwal, F.; Irfan, A.; Hassan, M.; Zhang, J. Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS Omega 2023, 8, 15638-15649. https://doi.org/10.1021/acsomega.3c01098
https://doi.org/10.1021/acsomega.3c01098
[26] Paras; Ramachandran, C. N. Tuning of the Singlet-Triplet Energy Gap of Donor-Linker-Acceptor Based Thermally Activated Delayed Fluorescent Emitters. J. Fluoresc. 2024, 34, 1343-1351. https://doi.org/10.1007/S10895-023-03365-2/FIGURES/3
https://doi.org/10.1007/s10895-023-03365-2
[27] Hladka, I.; Volyniuk, D.; Bezvikonnyi, O.; Kinzhybalo, V.; Bednarchuk, T. J.; Danyliv, Y.; Lytvyn, R.; Lazauskas, A.; Grazulevicius, J. V. Polymorphism of Derivatives of tert-Butyl Substituted Acridan and Perfluorobiphenyl as Sky-Blue OLED Emitters Exhibiting Aggregation Induced Thermally Activated Delayed Fluorescence. J. Mater. Chem. C 2018, 6, 13179-13189. https://doi.org/10.1039/C8TC04867C
https://doi.org/10.1039/C8TC04867C
[28] Danyliv, I.; Danyliv, Y.; Lytvyn, R.; Bezvikonnyi, O.; Volyniuk, D.; Simokaitiene, J.; Ivaniuk, K.; Tsiko, U.; Tomkeviciene, A.; Dabulienė, A.; et al. Multifunctional Derivatives of Donor-Substituted Perfluorobiphenyl for OLEDs and Optical Oxygen Sensors. Dye. Pigment. 2021, 193, 109493. https://doi.org/10.1016/J.DYEPIG.2021.109493
https://doi.org/10.1016/j.dyepig.2021.109493
[29] Danyliv, I.; Danyliv, Y.; Stanitska, M.; Bezvikonnyi, O.; Volyniuk, D.; Lytvyn, R.; Horak, Y.; Matulis, V.; Lyakhov, D.; Michels, D.; et al. Effects of the Nature of Donor Substituents on the Photophysical and Electroluminescence Properties of Derivatives of Perfluorobiphenyl: Donor-Acceptor versus Donor-Acceptor-Donor Type AIEE/TADF Emitters. J. Mater. Chem. C 2024, 12, 2911-2925. https://doi.org/10.1039/D3TC04633H
https://doi.org/10.1039/D3TC04633H
[30] Skuodis, E.; Bezvikonnyi, O.; Tomkeviciene, A.; Volyniuk, D.; Mimaite, V.; Lazauskas, A.; Bucinskas, A.; Keruckiene, R.; Sini, G.; Grazulevicius, J. V. Aggregation, Thermal Annealing, and Hosting Effects on Performances of an Acridan-Based TADF Emitter. Org. Electron. 2018, 63, 29-40. https://doi.org/10.1016/J.ORGEL.2018.09.002
https://doi.org/10.1016/j.orgel.2018.09.002
[31] Ge, X.; Li, G.; Guo, D.; Yang, Z.; Mao, Z.; Zhao, J.; Chi, Z. A Strategy for Designing Multifunctional TADF Materials for High-Performance Non-Doped OLEDs by Intramolecular Halogen Bonding. Adv. Opt. Mater. 2024, 12, 2302535. https://doi.org/10.1002/ADOM.202302535.
https://doi.org/10.1002/adom.202302535
[32] Yuan, W.; Jin, G.; Su, N.; Hu, D.; Shi, W.; Zheng, Y. X.; Tao, Y. The Electron Inductive Effect of Dual Non-Conjugated Trifluoromethyl Acceptors for Highly Efficient Thermally Activated Delayed Fluorescence OLEDs. Dye. Pigment. 2020, 183, 108705. https://doi.org/10.1016/J.DYEPIG.2020.108705
https://doi.org/10.1016/j.dyepig.2020.108705
[33] Ward, J. S.; Danos, A.; Stachelek, P.; Fox, M. A.; Batsanov, A. S.; Monkman, A. P.; Bryce, M. R. Exploiting Trifluoromethyl Substituents for Tuning Orbital Character of Singlet and Triplet States to Increase the Rate of Thermally Activated Delayed Fluorescence. Mater. Chem. Front. 2020, 4, 3602-3615. https://doi.org/10.1039/D0QM00429D
https://doi.org/10.1039/D0QM00429D
[34] Akiyama, M.; Yasuda, Y.; Kisoi, D.; Kusakabe, Y.; Kaji, H.; Imahori, H. The Perfluoroadamantyl Group: A Bulky and Highly Electron-Withdrawing Substituent in Thermally Activated Delayed Fluorescence Materials. Bull. Chem. Soc. Jpn. 2024, 97, uoae025. https://doi.org/10.1093/BULCSJ/UOAE025
https://doi.org/10.1093/bulcsj/uoae025
[35] Wada, Y.; Kubo, S.; Kaji, H.; Wada, Y.; Kubo, S.; Kaji, H. Adamantyl Substitution Strategy for Realizing Solution-Processable Thermally Stable Deep-Blue Thermally Activated Delayed Fluorescence Materials. Adv. Mater. 2018, 30, 1705641. https://doi.org/10.1002/ADMA.201705641.
https://doi.org/10.1002/adma.201705641
[36] Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta Hatakeyama, T. T.; Nakajima, K.; et al. Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv. Mater. 2016, 28, 2777-2781. https://doi.org/10.1002/ADMA.201505491
https://doi.org/10.1002/adma.201505491
[37] Wu, S.; Zhang, L.; Wang, J.; Kumar Gupta, A.; Samuel, I. D. W.; Zysman-Colman, E. Merging Boron and Carbonyl Based MR-TADF Emitter Designs to Achieve High Performance Pure Blue OLEDs**. Angew. Chemie Int. Ed. 2023, 62, e202305182. https://doi.org/10.1002/ANIE.202305182
https://doi.org/10.1002/anie.202305182
[38] Hua, T.; Li, N.; Huang, Z.; Zhang, Y.; Wang, L.; Chen, Z.; Miao, J.; Cao, X.; Wang, X.; Yang, C. Narrowband Near-Infrared Multiple-Resonance Thermally Activated Delayed Fluorescence Emitters towards High-Performance and Stable Organic Light-Emitting Diodes. Angew. Chemie Int. Ed. 2024, 63, e202318433. https://doi.org/10.1002/ANIE.202318433
https://doi.org/10.1002/anie.202318433
[39] Cai, X.; Xu, Y.; Pan, Y.; Li, L.; Pu, Y.; Zhuang, X.; Li, C.; Wang, Y. Solution-Processable Pure-Red Multiple Resonance-Induced Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode with External Quantum Efficiency over 20 %. Angew. Chemie Int. Ed. 2023, 62, e202216473. https://doi.org/10.1002/ANIE.202216473
https://doi.org/10.1002/anie.202216473
[40] Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Multi-Resonance Induced Thermally Activated Delayed Fluorophores for Narrowband Green OLEDs. Angew. Chemie 2019, 131, 17068-17073. https://doi.org/10.1002/ANGE.201911266
https://doi.org/10.1002/ange.201911266
[41] Oda, S.; Kawakami, B.; Horiuchi, M.; Yamasaki, Y.; Kawasumi, R.; Hatakeyama, T. Ultra-Narrowband Blue Multi-Resonance Thermally Activated Delayed Fluorescence Materials. Adv. Sci. 2023, 10, 2205070. https://doi.org/10.1002/ADVS.202205070
https://doi.org/10.1002/advs.202205070