Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Хімічне виробництво водню з алюмінієвого сплаву ак7 з використанням активаторів naf та nacl для систем аварійного енергозабезпечення

Nataliia Zabiiaka1, Nadiia Kanunnikova1, Oleksandr Haiduchok2
Affiliation: 
1 National Technical University «Kharkiv Polytechnic Institute», 2 Kyrpychova St., Kharkiv 61002, Ukraine 2 O.M. Beketov National University of Urban Economy in Kharkiv, 17 Chornoglazivska St., Kharkiv 61002, Ukraine Nadiia.Kanunnikova@khpi.edu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf475.37 KB
Abstract: 
Розглянуто метод отримання водню хімічним розчиненням алюмінієвого сплаву АК7 в лужних розчинах з додаванням активаторів NaF і NaCl. Оптимізований склад електроліту та концентрації активаторів значно підвищують швидкість розчинення алюмінію, що сприяє ефективному виділенню водню. Запропонований метод має переваги в стійкості, економічній ефективності та мінімальному впливі на довкілля. Проведено всебічний аналіз кінетичних параметрів, що дозволило визначити оптимальні умови процесу. Розроблена технологічна схема генерації водню може бути інтегрована в системи аварійного електропостачання об’єктів водопостачання, забезпечуючи декілька годин автономної роботи водопровідного обладнання в аварійних та екстремальних умовах
References: 

[1] Epoyan, S.; Airapetian, T.; Haiduchok, O.; Blahodarna, H.; Kravchuk, O. Experimental Research of Combined Horizontal Settling Tank for Drinking Water Supply. IOP Conf. Ser.: Earth Environ. Sci. 2024, 1376, 012029. https://doi.org/10.1088/1755-1315/1376/1/012029
[2] Haiduchok, O.; Kanunnikova, N.; Sakun, A.; Tomashevskyi, R.; Vorobiov, B. Prospective Technologies of Water Purification and Disinfection for Safe Human Consumption. In The Development of Technical, Agricultural and Applied Sciences as the Main Factor in Improving Life. Collective Monograph; Primedia eLaunch: Boston, 2024; pp. 230–252. https://doi.org/10.46299/ISG.2024.MONO.TECH.2
[3] Attacks on Ukraine’s Energy Infrastructure: Harm to the Civilian Population. Bulletin of UN Human Rights Monitoring Mission in Ukraine. United Nations Human Rights, 2024. https://ukraine.ohchr.org/sites/default/files/2024-09/Population.pdf (accessed 2024-11-28).
[4] Kwon, H.; Park, H.; Jun, S.; Choi, S.; Jang, H. High Performance Transition Metal-Based Electrocatalysts for Green Hydrogen Production. Chem. Commun. 2022, 58, 7874–7889. https://doi.org/10.1039/d2cc02423c
[5] Dincer, I.; Acar, C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrog. Energy 2015, 40, 11094–11111. https://doi.org/10.1016/J.IJHYDENE.2014.12.035
[6] Li, Z.; Xu, Q. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Acc. Chem. Res. 2017, 50, 1449–1458. https://doi.org/10.1021/acs.accounts.7b00132
[7] Pyshyev, S.; Lypko, Yu.; Demchuk, Yu.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 18, 244–257. https://doi.org/10.23939/chcht18.02.244
[8] Abdelhafiz, A.; Li, J. High Entropy Oxides Synthesis by Rapid Plasma Generation with Applications Towards Electrocatalytic Hydrogen Generation. ECS Meet. Abstr. 2023, MA2023-01, 1500. https://doi.org/10.1149/ma2023-01201500mtgabs
[9] Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Domen, K. Photocatalytic Solar Hydrogen Production from Water on a 100-m² Scale. Nature 2021, 598, 304–307. https://doi.org/10.1038/s41586-021-03907-3
[10] Lavrova, I.O.; Demidov, I.M.; Cherkashina, G.M. Comparative Analysis of the Impact of Synthetic Additives and Phosphatide Concentrate on the Adhesive Properties of Road Petroleum Bitumen. Vopr. Khimii Khimicheskoi Tekhnologii 2023, 146, 18–25. https://doi.org/10.32434/0321-4095-2023-146-1-18-25
[11] Shtefan, V.V.; Smyrnov, O.O.; Bezhenko, A.O.; Epifanova, A.S.; Kanunnikova, N.O.; Metenkanych, M.M.; Knyazev, S.A. Corrosion of Cobalt-Molybdenum Alloys in Chloride Solutions. Mater. Sci. 2019, 54, 512–518. https://doi.org/10.1007/s11003-019-00225-y
[12] Shtefan, V.V.; Bulhakova, A.S.; Kanunnikova, N.A. Electrochemical Behavior of Co-Mo Alloy. Funct. Mater. 2022, 29, 215–220. https://doi.org/10.15407/fm29.02.215
[13] Shtefan, V.V.; Kanunnikova, N.A. Oxidation of AISI 304 Steel in Al- and Ti-Containing Solutions. Prot. Met. Phys. Chem. Surf. 2020, 56, 379–384. https://doi.org/10.1134/S2070205120020239
[14] Alacid, E.; Nájera, C. Aqueous Sodium Hydroxide Promoted Cross-Coupling Reactions of Alkenyltrialkoxysilanes under Ligand-Free Conditions. J. Org. Chem. 2008, 73, 2315–2322. https://doi.org/10.1021/jo702570q
[15] Shtefan, V.; Kanunnikova, N.; Pilipenko, A.; Pancheva, H. Corrosion Behavior of AISI 304 Steel in Acid Solutions. Mater. Today: Proc. 2019, 6, 149–156. https://doi.org/10.1016/j.matpr.2018.10.088
[16] Shtefan, V.V.; Kanunnikova, N.O.; Goncharenko, T.Y. Analysis of the Structure and Anticorrosion Properties of Oxide Coatings on AISI 304 Steel. Mater. Sci. 2021, 57, 248–255. https://doi.org/10.1007/s11003-021-00539-w
[17] Wang, C.; Chou, Y.; Yen, C. Hydrogen Generation from Aluminum and Aluminum Alloys Powder. Procedia Eng. 2012, 36, 105–113. https://doi.org/10.1016/J.PROENG.2012.03.017
[18] Katsoufis, P.; Doukas, E.; Politis, C.; Avgouropoulos, G.; Lianos, P. Enhanced Rate of Hydrogen Production by Corrosion of Commercial Aluminum. Int. J. Hydrog. Energy 2020, 45, 10729–10734. https://doi.org/10.1016/j.ijhydene.2020.01.215.
[19] Das, B.; Robi, P.S.; Mahanta, P. Experimental Investigation and Modelling by Machine Learning Techniques for Hydrogen Generation by Reacting Aluminium with Aqueous NaOH Solution. Fuel 2023, 351, 128924. https://doi.org/10.1016/j.fuel.2023.128924
[20] Nur, A.; Budiman, A.W.; Jumari, A.; Nazriati, N.; Fajaroh, F. Electrosynthesis of Ni-Co/Hydroxyapatite as a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions. Chem. Chem. Technol. 2021, 15, 389–394. https://doi.org/10.23939/chcht15.03.389
[21] Feng, J.; Du, H.; Li, K. Current Status of Aluminium-Water Reaction for Hydrogen Production and Cogeneration Research. Adv. Comput. Eng. Technol. Res. 2024, 1, 273–279. https://doi.org/10.61935/acetr.2.1.2024.P273
[22] Lu, J.; Yu, W.; Tan, S.; Wang, L.; Yang, X.; Liu, J. Controlled Hydrogen Generation Using Interaction of Artificial Seawater with Aluminum Plates Activated by Liquid Ga–In Alloy. RSC Adv. 2017, 7, 30839–30844. https://doi.org/10.1039/C7RA01839H
[23] Dai, H.; Ma, G.; Xia, H.; Wang, P. Reaction of Aluminium with Alkaline Sodium Stannate Solution as a Controlled Source of Hydrogen. Energy Environ. Sci. 2011, 4, 2206–2212. https://doi.org/10.1039/C1EE00014D
[24] Mahmoodi, K.; Alinejad, B. Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water. Int. J. Hydrog. Energy 2010, 35, 5227–5232. https://doi.org/10.1016/J.IJHYDENE.2010.03.016
[25] Soler, L.; Candela, A.; Macanás, J.; Muñoz, M.; Casado, J. In Situ Generation of Hydrogen from Water by Aluminum Corrosion in Solutions of Sodium Aluminate. J. Power Sources 2009, 192, 21–26. https://doi.org/10.1016/J.JPOWSOUR.2008.11.009
[26] Fadhilah, N.; Maulana, F.; Wahyuono, R.; Raditya, M.; Risanti, D. Hydrogen Generation from Waste Aluminum Foil AA 1235 Promoted by Sodium Aluminate in Sodium Hydroxide Solutions. Key Eng. Mater. 2023, 965, 113–118. https://doi.org/10.4028/p-UR11a3
[27] Hiraki, T.; Takeuchi, M.; Hisa, M.; Akiyama, T. Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA. Mater. Trans. 2005, 46, 1052–1057. https://doi.org/10.2320/MATERTRANS.46.1052
[28] Noland, B.; Erickson, P. Apparent Kinetics of Hydrogen Production with Water-Slurried Aluminum Delivery in Aqueous Sodium Hydroxide Solutions. Int. J. Hydrog. Energy 2020, 45, 24285–24299. https://doi.org/10.1016/j.ijhydene.2020.06.165
[29] Tomashevskyi, R.; Vorobiov, B.; Kanunnikova, N.; Shestopalov, O.; Haiduchok, O.; Kniazieva, H. Portable Device for Purifying and Disinfecting Water in Extreme Conditions. 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek) 2024, 1–5. https://doi.org/10.1109/khpiweek61434.2024.10877947