Chemical hydrogen production from aluminum alloy ak7 using naf and nacl activators for emergency power supply systems

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Nataliia Zabiiaka1, Nadiia Kanunnikova1, Oleksandr Haiduchok2
Affiliation: 
1 National Technical University «Kharkiv Polytechnic Institute», 2 Kyrpychova St., Kharkiv 61002, Ukraine 2 O.M. Beketov National University of Urban Economy in Kharkiv, 17 Chornoglazivska St., Kharkiv 61002, Ukraine Nadiia.Kanunnikova@khpi.edu.ua
DOI: 
https://doi.org/10.23939/chcht19.04.601
AttachmentSize
PDF icon full_text.pdf631.63 KB
Abstract: 
This study explores a method for hydrogen production via the chemical dissolution of aluminum alloy AK7 in alkaline solutions with NaF and NaCl activators. The optimized electrolyte composition and activator concentrations significantly enhance the aluminum dissolution rate, leading to efficient hydrogen evolution. The proposed method offers advantages in sustainability, economic efficiency, and minimal environmental impact. A comprehensive analysis of the kinetic parameters was conducted, establishing optimal process conditions. The developed technological scheme can be integrated into emergency power supply systems for water supply facilities, providing several hours of autonomous operation of water supply equipment under emergency and extreme conditions.
References: 

[1] Epoyan, S.; Airapetian, T.; Haiduchok, O.; Blahodarna, H.; Kravchuk, O. Experimental Research of Combined Horizontal Settling Tank for Drinking Water Supply. IOP Conf. Ser.: Earth Environ. Sci. 2024, 1376, 012029. https://doi.org/10.1088/1755-1315/1376/1/012029
https://doi.org/10.1088/1755-1315/1376/1/012029

[2] Haiduchok, O.; Kanunnikova, N.; Sakun, A.; Tomashevskyi, R.; Vorobiov, B. Prospective Technologies of Water Purification and Disinfection for Safe Human Consumption. In The Development of Technical, Agricultural and Applied Sciences as the Main Factor in Improving Life. Collective Monograph; Primedia eLaunch: Boston, 2024; pp. 230-252. https://doi.org/10.46299/ISG.2024.MONO.TECH.2
https://doi.org/10.46299/ISG.2024.MONO.TECH.2

[3] Attacks on Ukraine's Energy Infrastructure: Harm to the Civilian Population. Bulletin of UN Human Rights Monitoring Mission in Ukraine. United Nations Human Rights, 2024. https://ukraine.ohchr.org/sites/default/files/2024-09/Population.pdf (accessed 2024-11-28).

[4] Kwon, H.; Park, H.; Jun, S.; Choi, S.; Jang, H. High Performance Transition Metal-Based Electrocatalysts for Green Hydrogen Production. Chem. Commun. 2022, 58, 7874-7889. https://doi.org/10.1039/d2cc02423c
https://doi.org/10.1039/D2CC02423C

[5] Dincer, I.; Acar, C. Review and Evaluation of Hydrogen Production Methods for Better Sustainability. Int. J. Hydrog. Energy 2015, 40, 11094-11111. https://doi.org/10.1016/J.IJHYDENE.2014.12.035
https://doi.org/10.1016/j.ijhydene.2014.12.035

[6] Li, Z.; Xu, Q. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid. Acc. Chem. Res. 2017, 50, 1449-1458. https://doi.org/10.1021/acs.accounts.7b00132
https://doi.org/10.1021/acs.accounts.7b00132

[7] Pyshyev, S.; Lypko, Yu.; Demchuk, Yu.; Kukhar, O.; Korchak, B.; Pochapska, I.; Zhytnetskyi, I. Characteristics and Applications of Waste Tire Pyrolysis Products: A Review. Chem. Chem. Technol. 2024, 18, 244-257. https://doi.org/10.23939/chcht18.02.244
https://doi.org/10.23939/chcht18.02.244

[8] Abdelhafiz, A.; Li, J. High Entropy Oxides Synthesis by Rapid Plasma Generation with Applications Towards Electrocatalytic Hydrogen Generation. ECS Meet. Abstr. 2023, MA2023-01, 1500. https://doi.org/10.1149/ma2023-01201500mtgabs
https://doi.org/10.1149/MA2023-01201500mtgabs

[9] Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Domen, K. Photocatalytic Solar Hydrogen Production from Water on a 100-m² Scale. Nature 2021, 598, 304-307. https://doi.org/10.1038/s41586-021-03907-3
https://doi.org/10.1038/s41586-021-03907-3

[10] Lavrova, I.O.; Demidov, I.M.; Cherkashina, G.M. Comparative Analysis of the Impact of Synthetic Additives and Phosphatide Concentrate on the Adhesive Properties of Road Petroleum Bitumen. Vopr. Khimii Khimicheskoi Tekhnologii 2023, 146, 18-25. https://doi.org/10.32434/0321-4095-2023-146-1-18-25
https://doi.org/10.32434/0321-4095-2023-146-1-18-25

[11] Shtefan, V.V.; Smyrnov, O.O.; Bezhenko, A.O.; Epifanova, A.S.; Kanunnikova, N.O.; Metenkanych, M.M.; Knyazev, S.A. Corrosion of Cobalt-Molybdenum Alloys in Chloride Solutions. Mater. Sci. 2019, 54, 512-518. https://doi.org/10.1007/s11003-019-00225-y
https://doi.org/10.1007/s11003-019-00225-y

[12] Shtefan, V.V.; Bulhakova, A.S.; Kanunnikova, N.A. Electrochemical Behavior of Co-Mo Alloy. Funct. Mater. 2022, 29, 215-220. https://doi.org/10.15407/fm29.02.215
https://doi.org/10.15407/fm29.02.215

[13] Shtefan, V.V.; Kanunnikova, N.A. Oxidation of AISI 304 Steel in Al- and Ti-Containing Solutions. Prot. Met. Phys. Chem. Surf. 2020, 56, 379-384. https://doi.org/10.1134/S2070205120020239
https://doi.org/10.1134/S2070205120020239

[14] Alacid, E.; Nájera, C. Aqueous Sodium Hydroxide Promoted Cross-Coupling Reactions of Alkenyltrialkoxysilanes under Ligand-Free Conditions. J. Org. Chem. 2008, 73, 2315-2322. https://doi.org/10.1021/jo702570q
https://doi.org/10.1021/jo702570q

[15] Shtefan, V.; Kanunnikova, N.; Pilipenko, A.; Pancheva, H. Corrosion Behavior of AISI 304 Steel in Acid Solutions. Mater. Today: Proc. 2019, 6, 149-156. https://doi.org/10.1016/j.matpr.2018.10.088
https://doi.org/10.1016/j.matpr.2018.10.088

[16] Shtefan, V.V.; Kanunnikova, N.O.; Goncharenko, T.Y. Analysis of the Structure and Anticorrosion Properties of Oxide Coatings on AISI 304 Steel. Mater. Sci. 2021, 57, 248-255. https://doi.org/10.1007/s11003-021-00539-w
https://doi.org/10.1007/s11003-021-00539-w

[17] Wang, C.; Chou, Y.; Yen, C. Hydrogen Generation from Aluminum and Aluminum Alloys Powder. Procedia Eng. 2012, 36, 105-113. https://doi.org/10.1016/J.PROENG.2012.03.017
https://doi.org/10.1016/j.proeng.2012.03.017

[18] Katsoufis, P.; Doukas, E.; Politis, C.; Avgouropoulos, G.; Lianos, P. Enhanced Rate of Hydrogen Production by Corrosion of Commercial Aluminum. Int. J. Hydrog. Energy 2020, 45, 10729-10734. https://doi.org/10.1016/j.ijhydene.2020.01.215.
https://doi.org/10.1016/j.ijhydene.2020.01.215

[19] Das, B.; Robi, P.S.; Mahanta, P. Experimental Investigation and Modelling by Machine Learning Techniques for Hydrogen Generation by Reacting Aluminium with Aqueous NaOH Solution. Fuel 2023, 351, 128924. https://doi.org/10.1016/j.fuel.2023.128924
https://doi.org/10.1016/j.fuel.2023.128924

[20] Nur, A.; Budiman, A.W.; Jumari, A.; Nazriati, N.; Fajaroh, F. Electrosynthesis of Ni-Co/Hydroxyapatite as a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride (NaBH4) Solutions. Chem. Chem. Technol. 2021, 15, 389-394. https://doi.org/10.23939/chcht15.03.389
https://doi.org/10.23939/chcht15.03.389

[21] Feng, J.; Du, H.; Li, K. Current Status of Aluminium-Water Reaction for Hydrogen Production and Cogeneration Research. Adv. Comput. Eng. Technol. Res. 2024, 1, 273-279. https://doi.org/10.61935/acetr.2.1.2024.P273
https://doi.org/10.61935/acetr.2.1.2024.P273

[22] Lu, J.; Yu, W.; Tan, S.; Wang, L.; Yang, X.; Liu, J. Controlled Hydrogen Generation Using Interaction of Artificial Seawater with Aluminum Plates Activated by Liquid Ga-In Alloy. RSC Adv. 2017, 7, 30839-30844. https://doi.org/10.1039/C7RA01839H
https://doi.org/10.1039/C7RA01839H

[23] Dai, H.; Ma, G.; Xia, H.; Wang, P. Reaction of Aluminium with Alkaline Sodium Stannate Solution as a Controlled Source of Hydrogen. Energy Environ. Sci. 2011, 4, 2206-2212. https://doi.org/10.1039/C1EE00014D
https://doi.org/10.1039/c1ee00014d

[24] Mahmoodi, K.; Alinejad, B. Enhancement of Hydrogen Generation Rate in Reaction of Aluminum with Water. Int. J. Hydrog. Energy 2010, 35, 5227-5232. https://doi.org/10.1016/J.IJHYDENE.2010.03.016
https://doi.org/10.1016/j.ijhydene.2010.03.016

[25] Soler, L.; Candela, A.; Macanás, J.; Muñoz, M.; Casado, J. In Situ Generation of Hydrogen from Water by Aluminum Corrosion in Solutions of Sodium Aluminate. J. Power Sources 2009, 192, 21-26. https://doi.org/10.1016/J.JPOWSOUR.2008.11.009
https://doi.org/10.1016/j.jpowsour.2008.11.009

[26] Fadhilah, N.; Maulana, F.; Wahyuono, R.; Raditya, M.; Risanti, D. Hydrogen Generation from Waste Aluminum Foil AA 1235 Promoted by Sodium Aluminate in Sodium Hydroxide Solutions. Key Eng. Mater. 2023, 965, 113-118. https://doi.org/10.4028/p-UR11a3
https://doi.org/10.4028/p-UR11a3

[27] Hiraki, T.; Takeuchi, M.; Hisa, M.; Akiyama, T. Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA. Mater. Trans. 2005, 46, 1052-1057. https://doi.org/10.2320/MATERTRANS.46.1052
https://doi.org/10.2320/matertrans.46.1052

[28] Noland, B.; Erickson, P. Apparent Kinetics of Hydrogen Production with Water-Slurried Aluminum Delivery in Aqueous Sodium Hydroxide Solutions. Int. J. Hydrog. Energy 2020, 45, 24285-24299. https://doi.org/10.1016/j.ijhydene.2020.06.165
https://doi.org/10.1016/j.ijhydene.2020.06.165
[29] Tomashevskyi, R.; Vorobiov, B.; Kanunnikova, N.; Shestopalov, O.; Haiduchok, O.; Kniazieva, H. Portable Device for Purifying and Disinfecting Water in Extreme Conditions. 2024 IEEE 5th KhPI Week on Advanced Technology (KhPIWeek) 2024, 1-5. https://doi.org/10.1109/khpiweek61434.2024.10877947
https://doi.org/10.1109/KhPIWeek61434.2024.10877947